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Abstract

Quantitative analysis of dynamic processes in living cells by means aofeBaence microscopy imaging requires tracking
of hundreds of bright spots in noisy image sequences. Deterministioagpes, which use object detection prior to tracking,
perform poorly in the case of noisy image data. We propose an impraeadbletely automatic tracker, built within a Bayesian
probabilistic framework. It better exploits spatiotemporal information pridr knowledge than common approaches, yielding
more robust tracking also in cases of photobleaching and object ititerathe tracking method was evaluated using simulated
but realistic image sequences, for which ground truth was availablerddudts of these experiments show that the method is
more accurate and robust than popular tracking methods. In addisibdation experiments were conducted with real fluorescence
microscopy image data acquired for microtubule growth analysis. Tes®nstrate that the method yields results that are in
good agreement with manual tracking performed by expert cell higtlagOur findings suggest that the method may replace
laborious manual procedures.

Index Terms

Bayesian estimation, particle filtering, sequential Monte Carlo, multiple olijacking, microtubule dynamics, fluorescence
microscopy, molecular bioimaging.

I. INTRODUCTION

In the past decade, advances in molecular cell biology haggered the development of highly sophisticated live cell
fluorescence microscopy systems capable of in vivo muledisional imaging of subcellular dynamic processes. Amalys
time-lapse image data has redefined the understanding of bialogical processes, which in the past had been studied) us
fixed material. Motion analysis of nanoscale objects sucprateins or vesicles, or subcellular structures such asotoioules
(Fig. 1), commonly tagged with green fluorescent proteinRJ;Fequires tracking of large and time-varying numbergotsin
noisy image sequences [1]-[7]. Nowadays, high-througlegperiments generate vast amounts of dynamic image dateh wh
cannot be analyzed manually with sufficient speed, accusady reproducibility. Consequently, many biologicallyenednt
guestions are either left unaddressed, or answered witht gmecertainty. Hence, the development of automated tmgcki
methods which replace tedious manual procedures and elienithe bias and variability in human judgments, is of great
importance.

Conventional approaches to tracking in molecular celldggl typically consist of two subsequent steps. In the firgp st
objects of interest are detected separately in each imageefrand their positions are estimated based on, for instance
intensity thresholding [8], multiscale analysis using thavelet transform [9], or model fitting [4]. The second stetves
the correspondence problem between sets of estimatedopssiThis is usually done in a frame-by-frame fashion, base
nearest-neighbor or smooth-motion criteria [10], [11]c®approaches are applicable to image data showing limitetbers of
clearly distinguishable spots against relatively unifdrackgrounds, but fail to yield reliable results in the capamr imaging
conditions [12], [13]. Tracking methods based on optic flds][ [15] are not suitable because the underlying assumptio
of brightness preservation over time is not satisfied in #soence microscopy, due to photobleaching. Methods based o
spatiotemporal segmentation by minimal cost path seagdhm@ve also been proposed [16], [17]. Until present, howeliese
have been demonstrated to work well only for the tracking single object [16], or a very limited number of well-sepatht
objects [17]. As has been observed [17], such methods faginwdither the number of objects is larger than a few dozen, or
when the object trajectories cross each other, which make tinsuitable for our applications.

As a consequence of the limited performance of existing@ggres, tracking is still performed manually in many labmias
worldwide. It has been argued [1] that in order to reach simsuperior performance as expert human observers in tamnpor
data association, while at the same time achieving a higtvet bf sensitivity and accuracy, it is necessary to makebese
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Fig. 1. Examples of microtubules tagged with GFP-labeled pht tracking proteins (bright spots), imaged using fluoneseeonfocal microscopy. The
images are single frames from six 2D time-lapse studies, coedwath different experimental and imaging conditions. Thialily of such images typically
ranges from SNRx 5-6 (a-c) to the extremely low SNR 2-3 (d-f).

of temporal information and (application specific) priookiedge about the morphodynamics of the objects beingedudihe
human visual system integrates to a high degree spatighaexrhand prior information [18] to resolve ambiguous dituzs in
estimating motion flows in image sequences. Here we explegower of a Bayesian generalization of the standard Kalman
filtering approach in emulating this process. It addressesptoblem of estimating the hidden state of a dynamic sy&tem
constructing the posterior probability density functiqgedf) of the state based on all available information, ingigdprior
knowledge and the (noisy) measurements. Since this pdf dieball available statistical information, it can be tedre
complete solution to the estimation problem.

Bayesian filtering is a conceptual approach, which yieldahdital solutions, in closed form, only in the case of linea
systems and Gaussian statistics. In the case of non-lipeard non-Gaussian statistics, numerical solutions caobib@ined
by applying sequential Monte Carlo (SMC) methods [19], imtipalar particle filtering (PF) [20]. In the filtering pross,
tracking is performed by using a predefined model of the ebgoedynamics to predict the object states, and by using the
(noisy) measurements (possibly from different types ofees) to obtain the posterior probability of these stateghé case
of multiple target tracking, the main task is to perform é#fit measurement-to-target association, on the basiseghblded
measurements [21]. The classical data association methoasiltiple target tracking can be divided into two main ses:
unigue-neighbor data association methods, as in the faulipothesis tracker (MHT), which associate each measemewith
one of the previously established tracks, and all-neighblata association methods, such as joint probabiliste asgociation
(JPDA), which use all measurements for updating all tratknedes [21]. The tracking performance of these methodsdsvik
to be limited by the linearity of the data models. By contr&WC methods that propagate the posterior pdf, or methaits th
propagate the first-order statistical moment (the proiighilypothesis density) of the multitarget pdf [22], haveebeshown
to be successful in solving the multiple target tracking dath association problems when the data models are nonhnea
non-Gaussian [23], [24].
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Previous applications of PF-based motion estimation gheluadar- and sonar-based tracking [24], [25], mobile robot
localization [19], [26], teleconferencing or video suilasice [27], and other human motion applications [28]-[38] most
computer vision applications, tracking is limited to a feljexrts only [31], [32]. Most biological applications, onetlother
hand, require the tracking of large and time-varying nurahmrobjects. Recently, the use of PF in combination with lleve
sets [33] and active contours [34] has been reported forogichl cell tracking. These methods outperform deterritis
methods, but they are straightforward applications of thgimal algorithm [31] for single target tracking, and catrbe
directly applied to the simultaneous tracking of many io#ftular objects. A PF-like method for the tracking of piogehas
also been suggested [35], but it still uses template magctunthe linking stage, it requires manual initializatiamd tracks
only a single object. In this paper, we extend our earlief@@mmce reports [36], [37], and develop a fully automateebBfed
method for robust and accurate tracking of multiple nanlesoajects in two-dimensional (2D) and three-dimensiora)(
dynamic fluorescence microscopy images. Its performanciensonstrated for a particular biological application denest:
microtubule growth analysis.

The paper is organized as follows. In Section Il we give mardépth information on the biological application consatk
in this paper, providing further biological motivation four work. In Section Il we present the general tracking fearark and
its extension to allow tracking of multiple objects. Next,Section IV, we describe the necessary improvements arptatotas
to tailor the framework to the application. These includees mynamic model which allows dealing with object interawti
and photobleaching effects. In addition, we improve theustiiess and reproducibility of the algorithm by introdgca new
importance function for data-dependent sampling (the aghoif the importance density is one of the most critical issine
the design of a PF method). We also propose a new, complaitdynatic track initiation procedure. In Section V, we prase
experimental results of applying our PF method to synthieti@ge sequences, for which ground truth was available, ds we
as to real fluorescence microscopy image data of microtuimaleth. A concluding discussion of the main findings andrthei
potential implications is given in Section VI.

[I. MICROTUBULE GROWTH ANALYSIS

Microtubules (MTs) are polarized tubular filaments (diaenet 25 nm) composed of/S-tubulin heterodimers. In most
cell types, one end of a MT (the minus-end) is embedded in thealed MT organizing center (MTOC), while the other
end (the plus-end) is exposed to the cytoplasm. MT polyra@da involves the addition ofi/G-tubulin subunits to the plus
end. During MT disassembly, these subunits are lost. MTgufeatly switch between growth and shrinkage, a featuredall
dynamic instability [38]. The conversion of growth to stk@ge is called catastrophe, while the switch from shrinkaggowth
is called rescue. The dynamic behavior of MTs is described/Bygrowth and shrinkage rates, and catastrophe and rescue
frequencies. MTs are fairly rigid structures having neadystant velocity while growing or shrinking [39]. MT dynams is
highly regulated, as a properly organized MT network is esakfor many cellular processes, including mitosis, gallarity,
transport of vesicles, and the migration and differerdiatof cells. For example, when cells enter mitosis, the cdoade
controls MT dynamics such that the steady-state length of Mdcreases considerably. This is important for spindi@dtion
and positioning [40]. It has been shown that an increase test@phe frequency is largely responsible for this chanddT
length [41].

Plus-end-tracking proteins, or +TIPs [42], specificallpdito MT plus-ends and have been linked to MT-target intevast
and MT dynamics [43]-[45]. Plus-end-tracking was first digsel for overexpressed GFP-CLIP170 in cultured mammalian
cells [46]. In time-lapse movies, typical fluorescent “cailee” dashes were observed, which represented GFP-CldPbund
to the ends of growing MTs. As plus-end tracking is intimatatsociated with MT growth, fluorescently labeled +TIPs are
now widely used to measure MT growth rates in living cellg] #mey are also the objects of interest considered in theeptes
work. With fluorescent +TIPs, all growing MTs can be discernalternatively, the advantage of using fluorescent tubidi
that all parameters of MT dynamics can be measured. Howieveggions where the MT network is dense, the fluorescent MT
network obscures MT ends, making it very difficult to examM& dynamics. Hence, in many studies based on fluorescent
tubulin [47]-[49], analysis is restricted to areas withiire tcells where the MT network is sparse. Ideally, one shos&lhoth
methods to acquire all possible knowledge regarding MT thiog, and this will be addressed in future work.

+TIPs are well positioned to perform their regulatory tagksietwork of interacting proteins, including +TIPs, maywgm
the changes in MT dynamics that occur during the cell cyd® [S5ince +TIPs are so important and display such a fasaigati
behavior, the mechanisms by which +TIPs recognize MT ends h#tracted much attention. In one view, +TIPs binds to
newly synthesized MT ends with high affinity and detach sdsolater from the MT lattice, either in a regulated manner
or stochastically [46]. However, other mechanisms have bken proposed [44], [45], [51]. Measuring the distribaitemd
displacement of a fluorescent +TIP in time may shed light enrttechanism of MT end binding. However, this is a labor
intensive procedure if fluorescent tracks have to be deakaelay hand, and very likely leads to user bias and loss of itapb
information. By developing a reliable tracking algorithne wbtain information on the behavior of all growing MTs witha
cell, which reveals the spatiotemporal distribution angutation of growing MTs. Importantly, this information cée linked
to the spatiotemporal fluorescent distribution of +TIPsisTil extremely important, since the localization of +TI@parts on
the dynamic state of MTs and the cell.
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I11. TRACKING FRAMEWORK

Before describing the details of our tracking approach, wst fecap the basic principles of nonlinear Bayesian tragkn
general (IlI-A), and PF in particular (I1I-B), as well as tegtension that has been proposed in the literature to alagking
of multiple objects within this framework (111-C).

A. Nonlinear Bayesian Tracking

The Bayesian tracking approach deals with the problem afriimfg knowledge about the unobserved state of a dynamic
system, which changes over time, using a sequence of noigsurements. In a state-space approach to dynamic state
estimation, the state vectay of a system contains all relevant information required tsctibe the system under investigation.
Bayesian estimation in this case is used to recursivelynasti a time evolving posterior distribution (or filteringstlibution)
p(x¢|z1.¢), which describes the object state given all observationg;.; up to timet.

The exact solution to this problem can be constructed byifyfreg the Markovian probabilistic model of the state evaba,
D(x¢|x;—1), and the likelihoodL(z;|x;), which relates the noisy measurements to any state. Théedgurobability density
function p(x:|z1.;) may be obtained, recursively, in two stages: prediction apdate. It is assumed that the initial pdf,
p(X0|2z0) = p(x0), also known as the prior, is available, {, = z, being the set of no measurements).

The prediction stage involves using the system model andfdf |z;.;—1) to obtain the prior pdf of the state at time
via the Chapman-Kolmogorov equation:

p(xt|Z1:t71) :/D(Xt‘xtfl)p(xtfl|let71)dxt71~ (1)

In the update stage, when a measuremeriiecomes available, Bayes’ rule is used to modify the primsdg and obtain the
required posterior density of the current state:

p(xt|Z1:4) o L(ze|xt)p(x¢|Z1:4-1).- 2

This recursive estimation of the filtering distribution che processed sequentially rather than as a batch, so tlsahdt i
necessary to store the complete data set nor to reprocesttgxiata if a new measurement becomes available [20]. The
filtering distribution embodies all available statistigaformation and an optimal estimate of the state can thealbt be
found with respect to any sensible criterion.

B. Particle Filtering Methods

The optimal Bayesian solution, defined by the recurrencatiogis (1) and (2), is analytically tractable in a restvietset
of cases, including the Kalman filter, which provides an mjli solution in case of linear dynamic systems with Gaussian
noise, and grid based filters [20]. For most practical moaélinterest, SMC methods (also known as bootstrap filtering,
particle filtering, and the condensation algorithm [31]p ased as an efficient numerical approximation. The bask ldge
is to represent the required posterior density funciitxy|z;.;) with a set of Ny random samples, or particles, and associated
weights{xgi)7w§i)}f\§1. Thus, the filtering distribution can be approximated as

p(x¢|2z1:4) Zwt xt—xt)),

whered(-) is the Dirac delta function and the weights are normahza:hsthatz i1 w,(l = 1. These samples and weights
are then propagated through time to give an approximaticthefiltering distribution at subsequent time steps.

The weights in this representation are chosen using a sBgluegrsion of importance sampling (SIS) [52]. It applieken
auxiliary knowledge is available in the form of an importarfanctiong(x:|x;—1, z;) describing which areas of the state-space
contain most information about the posterior. The idea &ntto sample the particles in those areas of the state-spaeesw
the importance function is large and to avoid as much as lplesgenerating samples with low weights, since they proeide
negligible contribution to the posterior. Thus, we woukklito generate a set of new particles from an appropriatédctsel
proposal function, i.e.,

Xiz) NQ(Xt|Xt 1azt) 1= {lﬂvNS‘} (3)

A detailed formulation ofy(:|-) is given in Section IV-F. '
With the set of state particles obtained from (3), the imguce weightaut(l) may be recursively updated as follows:

,- I Dy (x5 )
wgt) o (z¢|x; )) (Xt |Xt_1)wt(i)1- (4)
( |Xt 1’zt)
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Generally, any importance function can be chosen, subjesbine weak constraints [53], [54]. The only requiremengsthe
possibility to easily draw samples from it and evaluate tkelihood and dynamic models. For very large numbers of $asap
this MC characterization becomes equivalent to the usuadtfonal description of the posterior pdf.

By using this representation, statistical inferenceshsag expectation, maximum a posteriori (MAP), and minimuname
square error (MMSE) estimators (the latter is used for theabkposition estimation in the approach proposed in thjzepa
can easily be approximated. For example,

K)MSE — Ep[x¢] = /ti (x¢t|z1:¢)dxs ~ th . (5)

A common problem with the SIS particle filter is the degenyerphenomenon, where after a few iterations, all but a few
particles will have negligible weight. The variance of theportance weights can only increase (stochastically) tines [53].
The effect of the degeneracy can be reduced by a good choitepoitance density and the use of resampling [20], [52],
[53] to eliminate particles that have small weights and emiate on particles with large weights (see [53] for mortitke
on degeneracy and resampling procedures).

C. Multi-Modality and Mixture Tracking

It is straightforward to generalize the Bayesian formulatio the problem of multi-object tracking. However, due he t
increase in dimensionality, this formulation gives an exgrtial explosion of computational demands. The primargl go a
multi-object tracking application is to determine the moitr distribution, which is multi-modal in this case, ow@e current
joint configuration of the objects at the current time step, giMealservations up to that time step. Multiple modes are edus
either by ambiguity about the object state due to insufficleeasurements, which is supposed to be resolved durinkjrigpc
or by measurements coming from multiple objects being rdcksenerally, MC methods are poor at consistently maiimigin
the multi-modality in the filtering distribution. In pracg it frequently occurs that all the particles quickly migréo one of
the modes, subsequently discarding other modes.

To capture and maintain the multi-modal nature, which i®reht to many applications in which tracking of multiple et
is required, the filtering distribution is explicitly remented by an/-component mixture model [55]:

Xt|Z1 it Z Tm,tPm Xt|Z1 t) (6)

with Zn]\le Tm,+ = 1 and a non-parametric model is assumed for the individuaturéxcomponents. In this case, the particle

representation of the filtering distributiomx§7),wt7)}]" 1 with N = M N, particles, is augmented with a set of component

indicators, {cf' iy, With cf = m if partlcle i belongs to mixture componemt. For the mixture component: we also

use the equivalent notatlobcmt, f,lb)t ) {xt ,wt() : cgi) = m}}¥ . The representation (6) can be updated in the same
fashion as the two-step approach for standard Bayesiarestguestimation [55].

IV. TAILORING THE FRAMEWORK

Having presented the general framework for PF-based nittigect tracking, we now tailor it to our application: thady of
MT dynamics. This requires making choices regarding theetsomvolved as well as a number of computational and pralctic
issues. Specifically, we propose a new dynamic model, whags dhot only cover spatiotemporal behavior but also allows
dealing with photobleaching effects (IV-A) and object natetion (IV-B). In addition, we propose a new observatiordelcand
corresponding likelihood function (IV-C), tailored to @lofs that are elongated in their direction of motion. Theustihess and
computational efficiency of the algorithm are improved byngswo-step hierarchical searching (IV-D), measuremexiing
(IV-E) and a new importance function for data-dependentmiaug (1V-F). Finally, we propose practical procedures farticle
reclustering (IV-G) and automatic track initiation (IV-H)

A. State-Space and Dynamic Model

In order to model the dynamic behavior of the visible ends dfsMn our algorithm, we represent the object state with
the state vectok, = (x4, @1, Yi, Ut, 2ts 2, Omaxts Ominit, 0= ¢, 1) T, Where(omaxe, omins, 02.4)7 = s, is the object shape feature
vector (see IV-C){xy,y:, 2:)T = ry is the radius vectot;; = v, is velocity, andl; object intensity. The state evolution model
D(x¢|x;—1) can be factorized as

D(Xt\Xt—l) = Dy(Yt|Yt—1)Ds(St|St—1)D1(It|It—1), (7)
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wherey, = (x4, &1, Yi, Ui, 21, 2). Here, Dy (y:]y:—1) is modeled using a linear Gaussian model [53], which canlyebsi
evaluated pointwise in (4), and is given by

Dy(}’tb’t—ﬂ &
exp (= 330~ By Q3 - Fyen)). @

with the process transition matrik = diagF;, F,, F;] and covariance matriQQ = diagQ, Q1, Q1] given by

1 T qu1 12
F, = and =
' ( 0 1 > Q ( Q2 g2 )’

where T is the sampling interval. Depending on the parameters ¢i2, ¢22 the model (8) describes a variety of motion
patterns, ranging from random walky;|| = 0, ¢11 # 0, ¢12 = 0, g22 = 0) to nearly constant velocity||¢:|| # 0, ¢11 # 0,
q12 # 0, g2z # 0) [56], [57]. In our application, the parameters are fixedjtp = £72, 1o = L4712, q22 = 1T, whereq,
controls the noise level. In this case, model (8) correspaadhe continuous-time mode(t) = w(t) ~ 0, wherew(¢) is white
noise that corresponds to noisy accelerations [56]. We mlgke the realistic assumption that object velocities amented.
This prior information is object dependent and will be usedstate initialization (see IV-H). Small changes in fratodrame
MT appearance (shape) are modeled using the Gaussiantioargior D (s¢|s;—1) = N (s¢|st—1, T'q2I), where N (-|p, X)
indicates the normal distribution with meanand covariance matri¥, I is the identity matrix, and;, represents the noise
level in object appearance.

In practice, the analysis of time-lapse fluorescence miog images is complicated by photobleaching, a dynamicga®
by which the fluorescent proteins undergo photoinduced @terdestruction upon exposure to excitation light and tluse
their ability to fluoresce. Although the mechanisms of pb&#aching are not yet well understood, two commonly used (an
practically similar) approximations of fluorescence irsiénover time are given by

I(t)=Ae " + B )

I(t) =1 (1 - (z)k> ,_1 (10)

where A, B, a, Iy, L, and k are experimentally determined constants (see [58], [5B]nfore details on the validity and
sensitivity of these models). The rate of photobleaching fanction of the excitation intensity. With a laser as aniteion
source, photobleaching is observed on the time scale ofosgconds to seconds. The high numerical aperture objsctive
currently in use, which maximize spatial resolution andriowe the limits of detection, further accelerate the phlgathing
process. Commonly, photobleaching is ignored by standacking methods, but in many practical cases it is necessary
model this process so as to be less sensitive to changingimepeal conditions.

Following the common approximation (9), we model objeceidity in our image data by the sum of a time-dependent, a
time-independent, and a random component:

and

AIOAA e AIOBA + uy, (12)
A+ B A+ B
wherew; is zero-mean Gaussian process noise &nd the initial object intensity, obtained by the initializan procedure
(see IV-H). The parametené, B, anda are estimated using the Levenberg-Marquardt algorithméorinear fitting of (9)

to the average background intensity over tihg(see IV-C). In order to conveniently incorporate the pht#abhing effect
contained in (11) into our framework, we approximate it agst-firder Gauss-Markov process,= (1 — &) ;1 + ut, which
models the exponential intensity decay in the discrete-tiftomain. In this case, the corresponding state pbigfl:|l;—1) =
N(L|(1 — &)I;—1,q3T), whereqz = T~ 102 ando? is the variance ofy,.

The photobleaching effect could alternatively be accomawdi in our framework by assuming a constant intensity model
(& = 0) for D;(I;|I;_1), but with a very high variance for the process noisg, However, in practice, because of the limited
number of MC samples, the variance of the estimation woutddha grow, and many samples would be used inefficiently,
causing problems especially in the case of a highly peaketiibod L(z:|x;) (see IV-C). By using (11), we follow at least
the trend of the intensity changes, and bring the estimatioser to the optimal solution. This way, we reduce the esiion
variance and, consequently, the number of MC samples ndeddlde same accuracy as in the case of the constant intensity
model.

In summary, the proposed model (7) correctly approximatesllsaccelerations in object motion and fluctuations in obje
intensity, and therefore is very suitable for tracking girmyvMTs, as their dynamics can be well modeled by constartcitsl
plus small random diffusion [39]. The model (8) can also becessfully used for tracking other subcellular structufes
example vesicles, which are characterized by motion wigihdai nonlinearity. In that case, the process noise levéihetk by
Q, should be increased.

L+ 1o +u =
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B. Object Interactions and Markov Random Field

In order to obtain a more realistic motion model and avoid¢kraoalescence in the case of multiple object tracking, we
explicitly model the interaction between objects using arida random field (MRF) [60]. Here we use a pairwise MRF,
expressed by means of a Gibbs distribution

gl x”) oc exp (—di),
i,je{l,...,N}, 2D (12)

wheredm is a penalty function which penalizes the states of two abjefé) and cﬁj that are closely spaced at timeThat

is, dy’ J is maximal when two objects coincide and gradually fallsaxfthey move apart. This simple pairwise representation
is easy to implement yet can be made quite sophisticatedigUkis form, we can still retain the predictive motion modél
each individual target. To this end, we sample times the pairs{x(l) x) ) (M such pairs at a timen = {1,...,M}),

m,t—1> mt
from p,, (x¢-1|2z1.4+—1) and q(xt|xmt 1,2t), respectively] = {1,..., Ns}. Taking into account (12), the Welghts (4) in this
case are given by

L(ztrxl DD G,
wirlz)?t & = 1 H wt nlr)tvxklt) (13)
q( Xm, t|Xm =1 Zt) k=1,k#m
The mixture representatlo{r{xm £ W mt} _1 1=, is then straightforwardly transformed {cxt ,wt( ,Cy )} . In our appli-

cation we have found that an interaction potential basey onlobject positions is sufficient to avoid most trackindufias.
The use of a MRF approach is especially relevant and effiégiettie case of 3D+t data analysis, because object merging is
not possible in our application.

C. Observation Model and Likelihood

The measurements in our application are represented byusiseg) of 2D or 3D images showing the motion of fluorescent
proteins. The individual images (also called frames) acended at discrete instantswith a sampling interval’, with each
image consisting ofV, x N, x N, pixels (V. = 1 in 2D). At each pixel(Z, j, k), which corresponds to a rectangular volume
of dimensionsA, x A, x A, nm?, the measured intensity is denotedz@@' j, k). The complete measurement recorded at
timet is an N, x N, x N, matrix denoted ag;, = {z(¢,5,k) : i = 0,. —-1,7=0,. -1,k=0,...,N,—1}. For
simplicity we assume that the origins and axis orientatiohthe (x,y, ) reference system and tt@e 7, ) system coincide.
Let Z,(r) denote a first-order interpolation of(A,i, A,j, ALk).

The image formation process in a microscope can be modeladcasvolution of the true light distribution coming from
the specimen, with a point-spread function (PSF), whicthés dutput of the optical system for an input point light s@urc
The theoretical diffraction-limited PSF in the case of p@hand non-paraxial imaging can be expressed by the sBahye
diffraction integral [61]. In practice, however, a 3D Gaassapproximation of the PSF [4] is commonly favored over the
more complicated PSF models (such as the Gibson-Lanni ni{6@§l. This choice is mainly motivated by computational
considerations, but a Gaussian approximation of the palyBiBF is fairly accurate for reasonably large pinhole s{zelative
squared error (RSE) 9%) and nearly perfect for typical pinhole sizes (R8E.%) [61]. In most microscopes currently used,
the PSF limits the spatial resolution 49200 nm in-plane ands 600 nm in the direction of the optical axis, as a consequence
of which subcellular structures (typically of size 20 nm) are imaged as blurred spots. We adopt the common agsamp
that all blurring processes are due to a linear and spaiialgriant PSF.

The PF framework accommodates any PSF that can be calcyatetivise. To model the imaged intensity profile of the
object with some shape, one would have to use the convolwitnthe PSF for every stateg”. In order to overcome this
computational overload, we propose to model the PSF andtodtp@ape at the same time using the 3D Gaussian approximation
To model the manifest elongation in the intensity profile ofvMwe utilize the velocity components from the state vegtor
as parameters in the PSF. In this case, for an object of ityehsat positionr,, the intensity contribution to pixel, j, k) is
approximated as

he(i, g, by x¢) = by + (I + 1) ¥
exp (—;mTRTElRm) X
A, — 2
. (_ (kA3: = ] tan ) ) | (1)
202

whereb;, is the background intensity;, (= 235 nm) models the axial blurringR = R(¢) is a rotation matrix

R(¢)=( cos ¢ sinqb)’ EZ(a,%b(e) (2)>

—sing cos¢ Cin
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"o ( ;iz :ZQZ> s om(0) = omin — (Omin — Tmax) cos §,

Zt
>+
The parametersa,x and omin represent the amount of blurring and, at the same time, mih@eklongation of the object
along the direction of motion. For subresolution structusach as vesiclegmin = omax = 80 nm, and for the elongated MTs
Omin ~ 100 nm andomax =~ 300 nm.

For background level estimation we use the fact that theritnion of object intensity values to the total image irgien
(mainly formed by background structures with lower intéy)sis negligible, especially in the case of low SNRs. We himeend
that in a typical 2D image of siz&0? x 10 pixels containing a thousand objects, the number of obje@tipis only about
1%. Even if the object intensities would be 10 times as largehasbiackground level (very high SNR), their contribution to

the total image intensity would be less theots. In that case, the normalized histogram of the imagean be approximated
by a Gaussian distribution with meanand variancer?. The estimated backgrourig = b is then calculated according to

tanfd =

, tanqﬁ:yft, - < ¢,0 <.
2 T

I't t

1 Ny—1Ny—1N_,—1
by = m Z Z Z 2 (i, J, k). (15)
s i=0 j=0 k=0
In the case of a skewed histogram of image intensity, the amedf the distribution can be taken as an estimate of the
background level. The latter is preferable because itdrebject pixels as outliers for the background distribution
Since an object will affect only the pixels in the vicinity @ location,r;, we define the likelihood function as

A H ph(zt(ivjv k)|xt) (16)

L
c(ze]xt) po(2e(4, 5, K)|br) |

(i7j7k)ec(xt)
whereC(x;) = {(i,j, k) € Z3 : hy(i, 4, k;x¢) — by > 0.11,},

Pr(2e(i, J, k) |x¢) o

1 (2¢(, 4, k) — hu(d, J, k;Xt))2
o3 B ( 2070,J.1) ) ¢
and N Y
(el BB o exp (W) , a9
b

with o2 (i, j, k) ando? the variances of the measurement noise for the object+baukd and background, respectively, which
are assumed to be independent from pixel to pixel and fromdréo frame. Poisson noise, which can be used to model the
effect of the quantum nature of light on the measured datanésof the main sources of noise in fluorescence microscopy
imaging. The recursive Bayesian solution is applicableoag) las the statistics of the measurement noise is known fdr ea
pixel. In this paper we use a valid approximation of Poissoisey witho? (i, j, k) = h.(i, j, k;x;) and o = b, by scaling

the image intensities in order to satisfy the conditigh= b, [13].

D. Hierarchical Searching

Generally, the likelihood ¢ (z.|x;) is very peaked (even when the regi6tix;) is small) and may lead to severe sample
impoverishment and divergence of the filter. Theoreticallg impossible to avoid the degeneracy phenomenon, wiaier, a
few iterations of the algorithm, all but one of the normadizmportance weights are very close to zero [53]. Consedyéhe
accuracy of the estimator also degrades enormously [52prAnconly used measure of degeneracy isdbémated effective

sample siz¢53], given by )

N,
New(t) = (Z(wi’”)?), (19)
=1

which intuitively corresponds to the number of “useful” peles. Degeneracy is usually strong for image data with 8MR,

but the filter also performs poorly when the noise level issomll [19]. This suggests that MC estimation with accuratessrs
may perform worse than with inaccurate sensors. The proloi@mbe partially fixed by using an observation model which
overestimates the measurement noise. While the performarizster, this is not a principled way of fixing the probletet
observation model is artificially inaccurate and the réisglestimation is no longer a posterior, even if infinitelynyjaamples
were used. Other methods that try to improve the performaféd- include partitioned sampling [32], the auxiliary pelet
filter (APF) [20], [54] and the regularized particle filte®RRF) [19], [54]. Because of the highly nonlinear observatiodel
and dynamic model with a high noise level, the mentioned odshare inefficient for our application. Partitioned samgli
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requires the possibility to partition the state space andecouple the observation model for each of the partitiortschy
cannot be done for our application. Application of the APBbé&neficial only when the dynamic model is correctly specified
with a small amount of process noise. The tracking of highjpainic structures with linear models requires increasimgg t
process noise in order to capture the typical motion pagtern

To overcome these problems, we use a different approachdlms RPF, and mainly on progressive correction [19]. First,
we propose a second observation model:

L 2 9B
S(Zt‘xt) O'S(Xt X
(S70x) = SP(x1))”  (S7(xs) — SP(x2))”
exp 557 — 5 , (20)
9B 205 (x¢)
where
Stz(xt): Z Zt(imj?k)v
(i)j7k)ec(xt)
and h .
St (Xt) = Z ht(lﬁl%k;xt)?
(1,3,k)€C (x¢)

SP = b|C(x;)], where| - | denotes the set size operator, and the varian¢eand 0% are taken to approximate the Poisson
distribution: 0% = S? and 0% = S?. The likelihood Ls(z:|x;) is less peaked but gives an error of the same order as
Lg(z¢|x:). Another advantage is thdts(z|x;) can be used for objects without a predefined shape; only tierr€’(x,),
which presumably contains the object, and the total objeensity inC(x;) need to be specified.

Subsequently, we propose a modified hierarchical searakegtr, which uses both modelss and L. To this end, we
calculate an intermediate state at timiebetween time points — 1 andt, by propagating and updating the samples using the
likelihood Lg according to

P(xw|z141) < Lg(zer |5 ) D(xpr [x¢—1)p(X¢—1|21:6-1) (21)
wherez,;, = z,. After this step,Nes is still rather high, because the likelihodds is less peaked thah. In a next step,

particles with high weights at tim& are diversified and put into regions where the likelihdag is high, giving a much better
approximation of the posterior:

P(X¢|Z1:) o LG(zt|Xt)N(Xt|Ht’7 Y )p(x4r|Z1:01), (22)
where the expectation and the variance are given by
py = Eplxv],  Sv = Epl(xe — py) (xe — pe) "] (23)

The described hierarchical search strategy is further téenasLs. It keeps the numbeN quite large and, in practice,
provides filters that are more stable in time, with lower &ace in the position estimation.

E. Measurement Gating

Multiple object tracking requires gating, or measuremeftcion. The purpose of gating is to reduce computatioxgtiese
by eliminating measurements which are far from the predict®asurement location. Gating is performed for each track a
each time step by defining a subvolume of the image space, called the gatem@asurements positioned within the gate
are selected and used for the track update step, (2), whitsumements outside the gate are ignored in these commgtatio
In standard approaches to tracking, using the Kalman filtexxtended Kalman filter, measurement gating is accompuligiye
using the predicted measurement covariance for each dojelcthen updating the predicted state using joint protstigildata
association [63]. In the PF approach, which is able to cople monlinear and non-Gaussian models, the analog of thegpeed
measurement covariance is not available and can be cotestroaly by taking, for example, a Gaussian approximation of
the current particle cloud and using it to perform gatingn&ally, this approximation is unsatisfactory, since tdgaatages
gained from having a representation of a non-Gaussian gdfost. In the proposed framework, however, this approxinat
is justified by using the highly peaked likelihood functicenrsd the reclustering procedure (described in I1V-G), whiebgkthe
mixture components unimodal.

Having the measurements(r;), we define the gate for each of the tracks as follows:

Cri={r: € R? : (ry — I_‘m,t)TzT_nl,t(I't —Tmt) < Co}, (24)

where the parameter, specifies the size of the gate, which is proportional to thebability that the object falls within the
gate. Generally, since the volume of the gate is dependettieotracking accuracy, it varies from scan to scan and fracktr
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to track. In our experiments)y = 9 (a 3-standard-deviation level gate). The gatg ; is centered at the position predicted
from the particle representation of, (x¢|z1.t—1):

Tt =E, [r¢] = /I'tpm(Xt|Z1:t—1)dXt

N . .
~ > wl, (25)

(i)

i=l,c, 2 =m

where theff) are the position elements of the state vector
%)~ D(xx{V)), i={1,...,N}
Similarly, the covariance matrix is calculated as

St =By, [(te = ) (1 — Frnt) ). (26)

F. Data-Dependent Sampling

Basic particle filters [20], [31], [36], which use the propbdglistribution q(x¢|x:—1,2:) = D(x¢|x:—1) usually perform
poorly because too few samples are generated in regionsvherdesired posterigrx;|z;.;) is large. In order to construct
a proposal distribution which alleviates this problem aaket into account the most recent measuremgntae propose to
transform the image sequence into probability distrimgiolrue spots are characterized by a combination of comtersity
distributions and a relatively high intensity. Noise-icgd local maxima typically exhibit a random distribution infensity
changes in all directions, leading to a low local curvatufe These two discriminative features (intensity and cture) are
used to construct an approximation of the likelihabtk:|x:), using the image data available at timeFor each object we
use the transformation .

(Go * Zt(ry) — by)" K5 (1)

Pm(re|ze) = Jo., (Gox Zi(xe) — by)"rj (re)dadydz’ 0

Vr; € Cp, 1, WhereG,, is the Gaussian kernel with standard deviation (scalefe curvatures,(r;) is given by the determinant
of the Hessian matriH of the intensityz;(r;):

ki(ry) = det{H(ry)), H(r;) = V-V 3(ry), (28)

and the exponents > 0 ands > 0 weigh each of the features and determine the peakedness tkelihood.
Using this transformation, we define the new data depend®mopal distribution for object: as

Gm (Xt |Xt—1,2¢) = P (ve]2)N (Le|Ze(re) — by, g3T) ¥
N (selsiVS5 , T@D)N (vi|r, — o5, Tar 1), (29)

m,t—1> m,t—1>

Contrary to the original proposal distribution, which $aif the likelihood is too peaked, the distribution (29) gextes samples
that are highly consistent with the most recent measuresrianthe predicted (using the information from the previouset
step) gates. A combination of both proposal distributioiveg excellent results:

Om (Xe|xe—1,2¢) = YD (Xe|xt—1) + (1 = 7)Gm (Xt | %11, 2¢),

where0 < v < 1. Comparison shows that the proposal distributign(x:|x:—1,2:) is uniformly superior to the regular one
(v = 1) and scales much better to smaller sample sizes.

G. Clustering and Track Management

The representation of the filtering distributip(x:|z.;) as the mixture model (6) allows for a deterministic spagalustering
procedure({c’ii)},M’) = F({xgi)}, {c,(f)}, M) [55]. The functionF' can be implemented in any convenient way. It calculates
a new mixture representation (with possibly a different bemof mixture components) taking as input the current nmextu
representation. This allows modeling and capturing mergimd splitting events, which also have a direct analogy hiitogical
phenomena. In our implementation, at each iteration theuréxepresentation is recalculated by applyiigneans clustering
algorithm. The reclustering is based on spatial infornmatiabject positions) only and is initialized with the estiem (25).

Taking into account our application, two objects are nobvedld to merge when their states become similar. Whenever
objects pass close to one another, the object with the Hesdthibod score typically “hijacks” the particles of the niea
mixture components. As mentioned above, this problem iypsolved by using the MRF model for object interactionseTh
MRF model significantly improves the tracking performance3D+t. For 2D+t data sets, however, the observed motion is a
projection of the real 3D motion onto the 2D plane. In thisecaghen one object passes above or beneath another (in 3D), we
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perceive the motion as penetration or merging. These gifvg@tre in principle ambiguous and frequently cannot belved
uniquely, neither by an automatic tracking method nor by endiu observer.

We detect possible object intersections during trackingtmcking whether the gatés,, , intersect each other. For example,
for two trajectories the intersection is captured’if; N C;, # {0}, i,5 € {1,..., M}. In general, the measurement space
Cy =uM 1Cm, ¢ is partitioned into a set of disjoint regiold = {01 - C};t} whereC , Is either the union of connected
gates or the gate itself. For eadg .» we define a set of indice$; +, WhICh indicate WhICh of the gates; ; belong to it:

JktZ{ZE{l... M}:CitEC'M} (30)

For the gates"; , with |Ji:| = 1, the update of the MC werght@mt is done according to (4). For all other gate} ,,
which correspond to object interaction, we follow the piwe similar to the one described in Section IV-B. For eagh for

which |Jy ;| # 1, the set of state$xjvt}, J € Ji., is sampled from the proposal distribution (for evér {1,..., N,}), and

a set of hypothese@m —{6,...,0P}, § = 2l/ksl, is formed. Eacty!” is a set of binary association@agf;}, J € Jrt
Wherea(). = 1 if object j exists during the interaction, amj) = 0 if the object “dies” or leaves just before or during the
mteractlon and gives no measurements at tim&he hypothesrs that maximizes the likelihood is selected a
0,&,) = argmax L(z¢|x), (31)
el

where the likelihood. (z|x;) can be eitheLe (z:|x;) or Ls (z|x;), but the regiorC(x,) is defined a€’(x;) = Uje, ,C(x}}),
and h,(.;x;) is substituted in (16) and (20) for eaéH’ with 2 a’hy(;x\)). For the update of the MC weights! )

JEJIct Xt

the regionC'(x:) = C’(Xﬁ) andhy(;3x¢) = 3 e, , G jl)ht( ; Jt) are used in (16) and (20), with thxé) denoting thea(l

corresponding t(ﬁ,ﬁl). Additionally, in such cases, we do not perform reclustgriout keep the labels for the current iteration
as they were before. If the component representation in ¢ flew frames after the interaction event becomes too s#ffu
and there is more than one significant mode, splitting isqoeréd and a new track is initiated (see IV-H for more details)
Finally, for the termination of an existing track, the medeocommonly used for small target tracking [23], [24] cannot
be applied straightforwardly. These methods assume that ta imperfect sensors, the probability of detecting arectbis
less than one, and they try to follow the object after disapgmce for 4-5 frames, predicting its position in time angihg
to catch it again. In our case, when the density of objecthénitnages is high, such monitoring would definitely result in
“confirming” measurements after 3-5 frames of predictiont, these measurements would very likely originate from lagiot
object. In our algorithm in order to terminate the track wdirdethe threshold$,,.x, dmin, 7. that describe the “biggest”
objects that we are going to track. Then we sample the pestiol the predicted gates,, , using the data-dependent sampling
(27) with s = 0. If the determinant of the covariance matrix computed fastnMC samples is grater thag .52, ,52r 3
the track is terminated. If the gaté,, ; does not contain a real object the determinant value will liehrhigher than the
proposed threshold, which is nicely separate the objeota the background structures.

H. Initialization and Track Initiation

The prior distributionp(xo) is specified based on information available in the first fra@ee way to initialize the state
vectorx, would be to point on the desired bright spots in the image @etect regions of interest. In the latter case, the state
vector is initialized by a uniform distribution over the ®&apace, in predefined intervals for velocity and intensityd the
expected number of objects should be specified. Duringifijeand reclustering, after a burn-off period of 2-3 framasly
the true objects will remain.

For completely automatic initiation of object tracks in thiest frame, and also for the detection of potential objects f
tracking in subsequent frames, we use the following proeedtirst, the image space is divided im§ = Nx x Ny x Ny
rectangular 3D cells of dimensios, x A, x A,, with A, = 6omax and A, = 60,. Next, for each time step the image is
converted to a probability map according to (27), aid= M N, partrcles* ) are sampled with equal weights. The number
of particles in each cell represents the degree of beliefbijead birth. To discriminate potential objects from bacakgnd
structures or noise, we estimate for each cell the centerasfsin, (¢ = {1,..., N;}) by MC integration over that cell and
calculate the number of MC samples ; in the ellipsoidal regionsS, ;(r;) centered af;, (with semi-axes of lengtha /2,
A./2, A,/2). In order to initiate a new object, two conditions have todadisfied. The first condition is that; , should
be greater thanN"?k |“ N7 (6N;)~t. The threshold represents the expected number of partictee sampling was done
from the image region with uniform background intensity.eTéecond condition is similar to the one for track terminmatio
(see IV-G): the determinant of the covariance matrix shaddsmaller thaw2,, 52, 72r 3.

Each objectd (out of M, newly detected at time) is initialized with mixture weightr,; = (M + M)~ and object
positionr,, (the center of mass calculated by MC integration over thére§, .(r,)). The velocity is uniformly distributed
in a predefined range and the intensity is obtained from ttegyérdata for that frame and position. In cases where the sampl
from an undetected object are split between four cells (& uhlikely event when the object is positioned exactly on the
intersection of the cell borders), the object will most @bly be detected in the next time frame.




IEEE TRANSACTIONS ON MEDICAL IMAGING 12

SNR=2 SNR=3 SNR=5 SNR=7|Ell

Fig. 2. Examples of synthetic images used in the experiments.&fhimage is a single frame from one of the sequences, at SNitwilg an impression
of object appearance. The insets show zooms of objects atetiff SNRs. The right image is a frame from another sequen&\RE7, with the trajectories
of the 20 moving objects superimposed (white dots), illustgathe motion patterns allowed by the linear state evolutiwdel (8).

V. EXPERIMENTAL RESULTS

The performance of the described PF-based tracking metrasd evaluated using both computer generated image data
(Section V-A) and real fluorescence microscopy image data fMT dynamics studies (Section V-B). The former allowed us
to test the accuracy and robustness to noise and objecadtiter of our algorithm compared to two other commonly used
tracking tools. The experiments on real data enabled usrtgpace our algorithm to expert human observers.

A. Evaluation on Synthetic Data

1) Simulation Setup:The algorithm was evaluated using synthetic but realisbcibage sequences (20 time frames of
512 x 512 pixels, A, = A, = 50 nm, T = 1 sec) of moving MT-like objects (a fixed number of 10, 20, or 4fjects per
sequence, yielding data sets of different object den}itgenerated according to (8) and (14), for different levd$oisson
noise (see Fig. 2) in the range SNR=2—7, since SNR=4 has beetified by previous studies [12], [13] as a critical level a
which several popular tracking methods break down. In &dithe algorithm was tested using 3D synthetic image Secpee
(20 time frames 0612 x 512 pixels x20 optical slicesA, = A, =50 nm, A, =200 nm, T = 1 sec, with 10-40 objects per
sequence), also for different noise levels in the range dRSN-7. Here, SNR is defined as the difference in intensitwéen
the object and the background, divided by the standard tiewiaf the object noise [12]. The velocities of the objeaaged
from 200 to 700 nm/sec, representative of published dath [64

Having the ground truth for the synthetic data, we evaludtedaccuracy of tracking by using a traditional quanti&ativ
performance measure: the root mean square error (RMSHY, imdependent runs (we usdd = 3) [24]:

K
1
RMSE=,| — ) RMSE 2
S Kg SE., (32)

with

M
1 1 R
RMSE; = i > {|T | > e — rlfn,tnz} ) (33)

m=1 Ml e T,

wherer,, ; defines the true position of objest at timet, &, , is a posterior mean estimate of, ; for the kth run, and7,,
is the set of time points at which objest exists.

2) Experiments with Hierarchical Searchingn order to show the advantage of using the proposed hidcailckearch
strategy (see IV-D), we calculated the localization errbdifferent SNRs for objects moving along horizontal sthaitines
at a constant speed of 400 nm/sec (similar to [6]). The trarkias done for two types of objects: rounghfx = omin = 100
nm) and elongatedof,ax = 300 Nnm, omin, = 100 nm) using the likelihoodd s, Lg, and the combined two-step approach
Lgsc. The filtering was performed with 500 MC samples. The RMSEdibthree models is shown in Fig. 3. The localization
error of the hierarchical search is lower and the effectemple sizeN.x is higher than in the case of using only;. For
comparison, for the likelihoodgs, Lg, and Lgg, the ratios between the effective sample shg and N, are less than 0.5,
0.005, and 0.05, respectively.

3) Comparison with Conventional Two-Stage Tracking Meshobhe proposed PF-based tracking method was compared
to conventional two-stage (completely separated deteetia linking) tracking approaches commonly found in therditure.
To maximize the credibility of these experiments, we chasede two existing, state-of-the-art multitarget tracksugtware
tools based on this principle, rather than making our owrsgjtaly biased) implementation of described methods. Tise ifir
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Fig. 3. The RMSE in object position estimation as a functiorS&R for round (left) and elongated (right) objects using thiee different observation
models,Lq, Ls, andLgq.

Fig. 4. Example (SNR=3) showing the ability of our PF method ¢aldvith one-frame occlusion scenarios (top sequence)g ik proposed reclustering
procedure, whileParticleTracker(and similarlyVolocity) fails (bottom sequence).

Fig. 5. Typical example (SNR=3) showing the ability of our PFtinoel to resolve object crossing correctly (top sequence)ding the information about
the object shape during the measurement-to-track assaciatiess, whildParticleTracker(and similarlyVolocity) fails (bottom sequence).

Fig. 6. Example (SNR=3) where our PF method as welPagicleTrackerand Volocity failed (only the true tracks are shown in the sequence), Useca
three objects interact at one location and the occlusias fas more than one frame.

Volocity (Improvision, Coventry, UK), which is a commercial softegpackage, and the secondFarticleTracker[6], which
is freely available as a plugin to the public-domain imagalgsis tool ImageJ [65] (National Institutes of Health, Betda,
MD, USA).

With Volocity, the user has to specify thresholds for the object inteasitythe approximate object size in order to discriminate
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TABLE |
COMPARISON OF THE ABILITY OF THE THREE METHODS TO TRACK OBJECT CORRECTLY IN CASES OF OBJECT APPEARANGBISAPPEARANCE AND
INTERACTIONS.

Volocity ParticleTracker| Particle Filter
SNR ro | 71 ro | 71 ro | 11
Nir =10
2 11 0.9 1.8 0.1 1 1
3 1 1 1 0.5 1 1
4 1 1 1 0.7 1 1
5 1 1 1 1 1 1
7 1 1 1 1 1 1
Ner =20
2 1.15| 05 2 0.1 1.05 0.8
3 105| 06 | 1.95| 0.15 1 0.9
4 1.05| 0.6 | 1.35 0.45 1 0.95
5 1 0.7 11 0.65 1 1
7 1 0.85 | 1.05 0.9 1 1
Nir =40
2 19 | 0.05| 1.7 0.1 1.05 0.5
3 11 0.6 15 0.15 1.02 0.7
4 1.05| 0.7 | 1.42 0.2 1 0.8
5 1.04| 0.8 | 1.22 0.35 1 0.9
7 1.02| 0.8 | 1.17 0.33 1 0.9

objects from the background, in the detection stage. THessholds are set globally, for the entire image sequeratvwing

the extraction of all objects in each frame, linking is penfed on the basis of finding nearest neighbors in subsequent
image frames. This association of nearest neighbors al&s tmto account whether the motion is smooth or erratichWit
ParticleTracker the detection part also requires setting intensity anéatlgize thresholds. The linking, however, is based on
finding the global optimal solution for the correspondencebfem in a given number of successive frames. The soluson i
obtained using graph theory and global energy minimizgdnThe linking also utilizes the zeroth- and second-olidéznsity
moments of the object intensities. This better resolvesrgeiction problems and improves the linking result. Fohliobls,

the parameters were optimized manually during each stagi all objects in the scene were detected. Our PF-basetiadet
was initialized using the automatic initialization proceel described in Section IV-H. The user-definable algorifarameters
were fixed to the following valuestmax = 250 NM, omin = 120 nm, ¢; = 7500 nm?/seé, ¢» = 25 nm/sec,q3 = 0.1, and

10®> MC samples were used per object. To enable comparisons vétiuah tracking, five independent, expert observers also
tracked the 2D synthetic image sequences, using the frealiable software tool MTrackJ [66].

4) Tracking ResultsFirst, using the 2D synthetic image sequences, we compheedtility of our algorithm/olocity, and
ParticleTrackerto track objects correctly, despite possible object appesms, disappearances, and interactions or crossings.
The results of this comparison are presented in Table |. Terfopmance measures are listed; which is the ratio between
the number of tracks produced by the algorithm and the trumeben of tracks present in the data(), andr,, which is the
ratio between the number of correctly detected tracks aedrtie number of tracks. Ideally, the values for both ratiosusd
be equal to 1. A value ofy > 1 indicates that the method produced broken tracks. The naaisecof this is the inability to
resolve track intersections in some cases (see Fig. 4 fokamg@e). In such situations the method either initiates trawks
after the object interaction event (because during thectletestage only one object was detected at that locatienfFgg 4),
increasing the ratiay, or it incorrectly interchanges the tracks before and dfterinteraction (see Fig. 5 for an example),
lowering the ratior;. From the results in Table | and the examples in Figs. 4 ant &early follows that our PF method is
much more robust in dealing with object interactions. Thenstio in the latter example causes no problems for the RF, as
contrary to two other methods, it exploits information abobject appearance. During the measurement-to-traclciasiem,
the PF favors measurements that are close to the prediatatidn and that have an elongation in the predicted dineatio
motion. In some cases (see Fig. 6 for an example), all thrabads fail, which generally occurs when the interactionois t
complicated to resolve even for expert biologists.

Using the same data sets and tracking results, we calcutatedRMSE in object position estimation, as a function of
SNR. To make a fair comparison, only the results of correddtected tracks were included in these calculations. Téaltee
are shown in Fig. 7. The localization error of our algorithein the range of 10-50 nm, depending on the SNR, which is
approximately 2—3 times smaller than for manual trackinige Error bars represent the interobserver variability fanuoal
tracking, which, together with the average errors, indidhiat the performance of manual tracking degrades significéor
low SNRs, as expected. The errors of the three automatedodeshow the same trend, with our method being consistently
more accurate than the other two. This may be explained bYatttethat, in addition to object localization by centerro&ss
estimation, our hierarchical search performs further lleadon refinement during the second step (22). The RMSEiin F
7 is larger than in Fig. 3, because, even though only corrack$ were included, the accuracy of object localizatioringdu
multiple object tracking is unfavorably influenced at pkeehere object interaction occurs.
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Fig. 7. The RMSE in object position estimation as a functiorBbfR for our algorithm (Particle Filter) versus the two otlaettomatic methods\blocity
and ParticleTracke)j and manual tracking (five observers) based on synthetic irdate

Our algorithm was also tested on the 3D synthetic image seggeas described, using 20 MC simulations. The RMSEs
for the observation model s ranged from~ 30 nm (SNR= 7) to ~ 70 nm (SNR= 2). These errors were comparable to
the errors produced bYolocity (in this test,ParticleTrackerwas excluded, as it is limited to tracking in 2D+t). Despite t
fact that the axial resolution of the imaging system is apipnately three times lower, the localization error was nit¢aed
dramatically relative to the 2D+t case. The reason for thithat in 3D+t data, we have a larger number of informativegiena
elements (voxels). As a result, the difference in the RMSEslygced by the estimators employed in our algorithm and in
Volocity is less compared to Fig. 7.

B. Evaluation on Real Data

1) Image Acquisition:In addition to the computer generated image data, real 2Defieence microscopy image sequences
of MT dynamics were acquired. COS-1 cells were cultured aadsfected with GFP-tagged proteins as described [64], [67
Cells were analyzed at 3C on a Zeiss 510 confocal laser scanning microscope (LSM-3t&0nost experiments the optical
slice separation (in the-dimension) was set to Am. Images of GFP+TIP movements in transfected cells weraigztevery
1-3.5 seconds. For different imaging setups, the pixel singed from70 x 70 nn? to 110 x 110 nn?. Image sequences of
30-50 frames were recorded and movies assembled using LS\ tware. Six representative data sets (30 frames of size
512 x 512 pixels), examples of which are shown in Fig. 1, were presettérom larger volumes by manually choosing the
regions of interest. GFP+TIP dashes were tracked in diifecell areas. Instantaneous velocities of dashes werelatdd
simply by dividing measured or tracked distances betweamdss by the temporal sampling interval.

2) Comparison with Manual Trackind-acking ground truth for the real data, we evaluated thegoerénce of our algorithm
by visual comparison with manual tracking results. In thases the latter were obtained from two expert cell biolagisach
of which tracked 10 moving MTs of interest by using the afoeationed software tool MTrackJ. The selection of target MTs
to be tracked was made independently by the two observess, ftle decision of which feature to track (the tip, the cente
or the brightest point) was left to the observers. When domsistently, this does not influence velocity estimationkicl is
what we focused on in these experiments. The parametersr @lgaorithm (run with the modelL s¢) were fixed to the same
values as in the case of the evaluation on synthetic data.

3) Tracking ResultsDistributions of instant velocities estimated using owgasithm versus manual tracking are presented
in Fig. 8. The graphs show the results for the data sets oflk&).and (f), for which SNRx 5 and SNR~ 2, respectively. A
visual comparison of the estimated velocities per trackefich of the 10 tracks (the average track length was 13 tieps)kt
is presented in Fig. 9, with more details for two repres@rmgaracks shown in Fig. 10. Application of a paired Studetest
per track revealed no statistically significant differefie#ween the results of our algorithm and that of manual inagkor
both expert human observers £p 0.05 in all cases). Often, biologists are interested inayeelocities over sets of tracks.
In the described experiments, the difference in averagecitgl (per 10 tracks) between automatic and manual trackiag
less thanl1%, for both observers. Our velocity estimates are also coalparto those reported previously based on manual
tracking in the same type of image data [64].

Finally, we present two different example visualizatiofiseal data together with the results of tracking using ogoathm.

Fig. 11 shows the results of tracking in the presence of gheathing, which clearly illustrates the capability of @lgorithm
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to initiate new tracks for appearing objects, to terminaeks for disappearing objects, and to deal with closelysipgs
objects. The rendering in Fig. 12 gives a visual impressiothe full tracking results for a few time frames of one of ttealr
data sets used in the experiments.

VI. DIscussiON ANDCONCLUSIONS

In this paper we have demonstrated the applicability ofigarfiltering for quantitative analysis of subcellular dmics.
Compared to existing approaches in this field, our approach substantial improvement for detection and tracking afela
numbers of spots in image data with low SNR. Conventionahou, which perform object detection prior to the linkinggs,
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Fig. 11. Results (six tracks) of automatically tracking MTsight spots) in the presence of photobleaching, illusteathe capability of our algorithm to
capture newly appearing objects (tracks 5 and 6) and to tdelgect disappearance (for example track 4). It also showsdbustness of the algorithm in
the case of closely passing objects (tracks 1 and 5).

use non-Bayesian maximum likelihood or least squares agiitfi The variance of those estimators is larger than triance

of the MMSE estimator [56], for which some prior informatiabout the estimated parameters is assumed to be known. In
our case, this information is the prediction of the objecsifpon according to the motion model. This step, which optign
exploits available temporal information, makes our prdligtte tracking approach perform superior in the preseoteevere
noise in comparison with existing frame-by-frame appreaclwhich break down at SNR 4-5 [12], [13]. As the experiments
show, contrary to two other popular tracking tools, our &thon still yields reliable tracking results even in datawBNR as

low as 2 (which is not uncommon in practice). We note that tmmarison with these two-stage tracking approaches mainly
evaluated the linking parts of the algorithms, as the dietegtart is based on thresholding, and the parameters foistage
were optimized manually until all the desired objects werealized. In practice, since these algorithms were notgdesi
specifically to deal with photobleaching effects, they canelspected to perform worse than reported here.

The results of the experiments on synthetic image data stigiget our algorithm is potentially more accurate than nahnu
tracking by expert human observers. The experiments onflteakscence microscopy image sequences from MT dynamics
studies showed comparable performance. This is explaiyethé fact that in the latter experiments, we were limited to
comparing distributions and averages (Figs. 8 and 9), whiely conceal small local discrepancies, especially when the
objects’ velocities vary over time. Instant velocities wetlso analyzed per track (Fig. 10) but could not be quaivegt
validated due to the lack of ground truth. Nevertheless,résalts indicate that our algorithm may replace laborioasual
procedures. Currently we are evaluating the method alsotfar biological applications to further demonstrate dgamtages
over current means of manual and automated tracking andification of subcellular dynamics. Our findings encourage u
of the method to analyze complex biological image sequenoe®nly for obtaining statistical estimates of averageoeiy
and life span, but also for detailed analyses of completeHi§tories.
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Fig. 12. Visualization of tracking results (80 tracks) puodd by our algorithm in the case of the real fluorescence stomy image sequence of Fig. 1(a).
Left: Trajectories projected on top of one of the frames, igvan impression of the MT dynamics in this image sequence. Righe frames from the
sequence (time is increasing from bottom to top) with theettaries rendered as small tubes connecting the frames. fderieg was accomplished using
a script developed in-house based on the Visualizationkito@8].

The algorithm was implemented in the Java programming laggySun Microsystems Inc., Santa Clara, CA) as a plugin
for ImageJ (National Institutes of Health, Bethesda, MD]J68 public domain and platform independent image proocessi
program used abundantly in biomedical image analysis [B@hning on a regular PC (a Pentium IV with 3.2 GHz CPU and
3 GB of RAM) using the Java Virtual Machine version 1.5, theqassing time per object per frame usit@} MC particles
is about 0.3 sec. This cost is independent of image size,ubecall computations are done only for measurements falling
inside the gates (defined for each track). We expect thagrfasecution times are still possible, after further opttion of
the code. In the near future the algorithm will be integrated a user-friendly software tool which will be made publly
available.

The recursive nature of the proposed method (only the meamnts up to time are required in order to estimate the object
positions at time) can be effectively utilized to dramatically increase thetighput of live cell imaging experiments. Usually
time-lapse imaging requires constant adjustment of theiimgafield and focus position to keep the cell of interest esad
in the imaged volume. There are basically two methods tdktraoving objects with a microscope. Most commonly, images
are acquired at a fixed stage and focus position and the maonermaee analyzed afterwards, using batch image processing
algorithms. The second possibility, rarely implementexd{a program the microscope to follow the movements of thé cel
automatically and keep it in the field of view. Such trackingtems have been developed previously [70]-[72], but they
are either hardware-based or not easily portable to otherostopes. Using the proposed software-based trackinoahet
however, it can be implemented on any fluorescence micresaedilhn motorized stage and focus. The prediction step of the
algorithm can be used to adapt the field of view and steer ther lim the direction of moving objects. This also suggests a
mechanism for limiting laser excitation and thereby redggbhotobleaching.
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