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ABSTRACT

Quantitative analysis of neuronal cell morphology from mi-
croscopic image data requires accurate reconstruction of the
axonal and dendritic trees. The most critical points to be de-
tected in this process are the bifurcations. Here we present a
new method for fully automatic detection of bifurcations in
microscopic images. The proposed method models the es-
sential characteristics of bifurcations and employs fuzzy rule
based reasoning to decide whether the extracted image fea-
tures indicate the presence of a bifurcation. Algorithm tests
on synthetic image data show high noise immunity and exper-
iments with real fluorescence microscopy data exhibit average
recall and precision of 90.4% and 90.5% respectively.

Index Terms— Neuron reconstruction, bifurcation detec-
tion, fuzzy logic, fluorescence microscopy.

1. INTRODUCTION

Reconstruction of neuronal cell morphology from micro-
scopic image data is an important task in many neuroscien-
tific studies [1]. A key step in this process is the tracing of
the axonal and dendritic trees emanating from the cell body.
Generally these trees can be described as a graph consisting
of hundreds to many thousands of branch points and seg-
ments. In principle, all branch points in a neuronal tree are
bifurcations: locations where the network diverges, forming
two new distinct threads in space. Accurate detection of bi-
furcation points is therefore of crucial importance in neuronal
reconstruction. Despite being reasonably intuitive for human
visual recognition, even in a single image neuronal bifurca-
tions are far too numerous for manual annotation and require
automated image analysis methods for their detection.

Computational methods for modeling and detecting bifur-
cation points in tree-like image structures vary depending on
the type of image data, the tree complexity, and the applica-
tion. Here we focus on fluorescence microscopy images of
neurons (Fig. 1), where the detection is hampered by possible
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Fig. 1. (a) Fluorescence microscopy image of a neuron. (b,c)
Detailed sections of the image (scale bar: 100 µm).

signal interruptions (due to imperfect staining), large differ-
ences between branch segments in terms of both intensity and
diameter, and the often intricate local morphology. Detection
may be performed either implicitly (after initial global im-
age segmentation) or explicitly (as input for subsequent seg-
mentation by local tracing). Several approaches have recently
been proposed with reasonable success, such as deducing bi-
furcation points as locations where the active contours used
for branch segment tracing happen to overlap [2] or where
segmentation wavefronts split [3, 4], or applying hypothesis
testing after initial tracing [5]. A wavelet based local model
fitting scheme [6] enables explicit localisation, but does not
model all relevant degrees of freedom in the data, such as
the angles between branches. Some solutions use the spread
of neighboring pixel intensities as a detection criterion [7].
Given the still limited performance of state-of-the-art neuron
reconstruction algorithms [8], and the need to further reduce
manual annotation and curation, improved methods for detec-
tion of bifurcations points are very much needed.

Here we propose a novel solution for fully automated
detection of bifurcation loci in neuron microscopy images.
Common signal discontinuities and bifurcation configuration
diversity (branch intensities, diameters, angles) are tackled
with a new filtering and profile analysis scheme. Uncertainty
and nonlinearity of the final decision are treated with fuzzy
logic and an appropriate set of IF-THEN rules.



2. METHOD

The proposed method consists of three steps. First, a set of
filters is applied to calculate an angular profile of local image
structure. Next, peaks in the profile are detected, and asso-
ciated follow-up points in the corresponding radial direction
are analyzed. Finally, a fuzzy rule-based system is used to
determine the most likely bifurcation points. We also discuss
implementational aspects of our method.

2.1. Local filtering and profiling

To estimate the presence of curvilinear threads we use a set
of oriented filters T (x′, y′) distributed around a given loca-
tion (x, y) (Fig. 2a) by rotation over angle α ∈ [0, 2π) and
translation over a distance kD:[
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where k is a scale parameter and D defines the filter kernel
patch size, the latter of which relates to the expected diameter
of the traced neuron structure. The kernels are profiled with
normalized Gaussian weights (Fig. 2a):
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and convolved with image intensity values at corresponding
image locations. The use of a Gaussian cross-sectional profile
is justified by the fact that the diameter of neuronal branches is
often smaller than the imaging resolution, resulting in image
structures reflecting the point-spread function of the micro-
scope, which can be accurately modeled by a Gaussian. For
each location, application of the set of filters with different
angles results in an angular response profile p(α;x, y, k,D)
characterizing the local image structure (Fig. 2c).

2.2. Peak detection and association

Rotational invariance and the ability to adapt to different
configurations are accomplished by detecting peaks in the
profile at each image location. The peaks extracted from
p(α;x, y, k,D) represent radial directions (red, green, blue
clusters in Fig. 2b) in which relatively high intensities are
found in the image. Peak detection is accomplished using a
line search optimization scheme [9] that iteratively moves a
set of abscissa points until each of them converges to one of
the profile extrema. Profiles are generally sufficiently smooth
for the line searching not to be affected by outliers or noise.
Iterative procedures such as line searching are convenient
since the number of points converging to clustered peaks pro-
vides quantitative information that can be used to rank and
identify the strongest peaks for further analysis.

Each profile peak corresponds to an angle αp that can
be used to calculate a follow-up location [xp, yp] = [x, y] +
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(a) Set of oriented filters. (b) Profile peak loci.
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(c) Typical p(α;x, y, k,D) profile with peak detections.

Fig. 2. Profile extraction and analysis.

kD[cosαp, sinαp] in the image where the described profiling
and peak detection scheme is repeated. Tracking initiated this
way is recursively expanded by extracting the next generation
of peak locations starting from already obtained ones. In the
case of bifurcations, the majority of expanded peak locations
group together in clusters, along elongated image structures
(Fig. 2b). Up to four tracks are considered in order to cover
both bifurcations and cross-overs.

The final output at this stage are scores ψ that quantify the
strength and connectivity of every track step. Here, ψ is de-
fined as the median image intensity calculated along the line
connecting the peak locations of a given track. A set of six
ψ values is assigned to each image location (x, y), since the
three highest-scoring tracks are selected and supplied to the
detection system: ψ1,2

A , ψ1,2
B , ψ1,2

C , where A,B,C denote the
tracks (marked with red, green, blue in Fig. 2b) and 1, 2 de-
note track steps counted from the center. Each score is as-
sociated with its corresponding peak location, for example
ψ1
A → (x1A, y

1
A) and ψ2

B → (x2B , y
2
B).

2.3. Fuzzy rule based detection

The last stage of the detection algorithm uses the computed
scores ψ of each image location to decide whether or not there
is a bifurcation at that location. The aim is to deal with uncer-
tainty about the scores. Artificial intelligence theory models
uncertainty using probabilities or logical reasoning. Ontolog-
ically, both concepts treat events as crisp true or false, but as-
sign a level of (un)certainty. Fuzzy logic systems (FLS) [10],
on the other hand, introduce vagueness, allowing events to be
partially true or false. Here we employ the FLS concept to
grade the likelihood of each analyzed location to be a bifurca-
tion region. We define three fuzzy sets to express an outcome
in linguistic terms: YES (Y) if it belongs to a bifurcation re-
gion; MAYBE (M) if it possibly belongs to a bifurcation re-
gion; NO (N) if it does not belong to a bifurcation region.
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Fig. 3. h(θ) and q(ϕ) denote the degree of membership to
input (a) and output (b) linguistic variable.

The decision making in this case involves non-linear reason-
ing. Hence we adopt a rule-based system approach similar to
the one applied to solving motion correspondence in biomed-
ical image analysis [11].

The inputs of our FLS are calculated by subtracting the
estimated local background value β(x, y) from the scores ψ
obtained in the previous stage:

θts = ψts − β(xts, yts), s ∈ {A,B,C} , t ∈ {1, 2}

where β(x, y) at the given image location (x, y) is estimated
as the median of the image intensities extracted from a local
circular neighborhood, with radius equal to three times the
value of the expected neuron diameter D to capture enough
context. Numerical values θ express how different the me-
dian intensity along a given track segment is compared to the
local background. Values higher than a predefined threshold
level iDiff indicate the existence of relevant image structure. θ
is assigned a membership value for each linguistic variable,
ω, with possible values {HIGH, FAIR, LOW}, abbreviated as
{H, F, L}. FLS takes as input linguistic variables and out-
puts linguistic variable υ ∈ {Y, M, N} grading the bifurca-
tion detection outcome. The system allows for tolerance on
iDiff and avoids strict mathematical formulation of the nonlin-
ear input/output relationships by using a set of essential rules
(Table 1) to associate fuzzy linguistic variables.

Input numerical values are assigned to linguistic variables
(the “fuzzification” step) using common triangular member-
ship functions (Fig. 3a). A set of IF-THEN rules is then used
to determine the value of the output variable (Table 1). Rules
are employed using fuzzy set operations [10] and are com-
bined to yield output fuzzy values through an inference pro-
cess that accumulates the results of individual rules using the
maximum algorithm [10]. The membership function of the
output value (Fig. 3b) together with the commonly used cen-
troid “defuzzification” procedure [10] are used to convert the
produced fuzzy value into a crisp output ϕ. The latter output
is a real number, ϕ ∈ [0, 1], corresponding to the abscissa
range in the defuzzification membership function (Fig. 3b).
This crisp output is what we will refer to as bifurcationess: the
degree of membership to the fuzzy set of bifurcation points
denoted with the linguistic term YES. Our method ultimately
looks for connected regions with ϕ > 0.6.

Table 1. IF-THEN rules used in the fuzzy logic system
emulate the decision-making of a human expert. Fuzzy set
operations union (∪) and intersection (∩) operating on the
membership values, are defined as max and min respectively.
s, s1, s2 ∈ {A,B,C} and t, t1, t2 ∈ {1, 2}.

1.
⋂
s,t
(θts=H)⇒ υ = Y

2. (θts=F)∩
( ⋂
(s1,t1)6=(s,t)

(θt1s1 = H)
)
⇒ υ = M

3. (θts=F)∩(θts1 6=s=F)∩
( ⋂
s2 6=s,s1

(θts2 = H)
)
⇒ υ = M

4.
⋃
s,t

(
(θts=F)∩(θt1 6=ts =F)

)
⇒ υ = N

5.
⋃
s,t

(
(θts=F)∩(θt1 6=ts1 6=s=F)∩(θt2 6=t,t1s2 6=s,s1 =F)

)
⇒ υ = N

6.
⋃
s,t
(θts=L)⇒ υ = N

2.4. Implementational aspects

Microscopy images of neuronal cells are usually very sparse.
Depending on the experiment, the relevant image structures
may cover only 5%-50% of the image area, suggesting a com-
putational speed-up by ignoring regions that evidently belong
to the background. In our implementation of the method all
image locations (x, y) with intensity lower than β(x, y)+iDiff
are excluded from the analysis and assigned υ = 0. The
method was implemented in Java as a plugin for ImageJ [12].
On a standard PC configuration with Intel Core i7 8 × 2 GHz
CPU, 6 GB RAM, it requires about 8 seconds to process a 512
× 512 pixel image with 10% of foreground. Execution time
is proportional to the amount of foreground in image. Com-
putationally demanding tasks such as kernel convolution and
iterative peak search are implemented in parallel.

3. RESULTS

The performance of the proposed method was evaluated us-
ing both synthetic images and manually annotated real neuron
images. Parameters D and iDiff were set to 4 and 10 respec-
tively. Synthetic data contained artificial bifurcations gener-
ated as intersections of linear segments and consisted of seven
subsets, Ci, i = 1 . . . 7 (Table 2), each representing a differ-
ent combination of branch diameters and random splitting an-
gles between branch segments. Each subset contained 1,000
bifurcations with known ground-truth positions and branch
diameters ranging from 3 to 7 pixels. Three different signal-

Fig. 4. Synthetic bifurcations for different SNR.



Fig. 5. (a, b, c) Bifurcation detection on different neurons.

to-noise ratios (SNR) were considered (Fig. 4) to evaluate the
robustness of the method to (Poisson) noise.

Bifurcation detection performance was assessed in terms
of the amount of true-positive (TP), false-positive (FP), and
false-negative (FN) detections for different subsets and SNR
level (Table 2). From these we computed the recall, R =
TP/(TP + FN), and precision, P = TP/(TP + FP). We ob-
served that the detection performance is very high for SNR ≥
2 but drops significantly for SNR ≈ 1 (Table 2). Since real
image data usually contains less noise we conclude that the
method is practically robust to noise.

The method was also tested on a selection of nine fluo-
rescence microscopy neuron images with a total of 724 an-
notated bifurcations. Performance was measured in the same
manner as with the synthetic data and showed consistently
high recall and precision with average of 90.4% and 90.5%
respectively (Table 2). Illustrative examples of detection re-
sults are shown in Fig. 5. The neuron tracing literature, which
often lacks information on bifurcation detection performance,
reports a detection rate of 86% in a recent study [5].

4. DISCUSSION

We have presented a new method for bifurcation detection
in fluorescence microscopy images of neuronal cells. The
method finds the number of peaks in local directional filter
responses and identifies the bifurcation configuration. Peak
detection and weighting is implemented using an efficient it-
erative line search method. In addition, a fuzzy rule-based de-
cision scheme is used to assign a fuzzy bifurcationess score to
each location. Experimental results with synthetic data show
that the method can cope with SNR as low as 2 and that it
has high recall and precision of around 90%. Although in this
paper we have focused on 2D, the proposed method is ex-
pandable to 3D. Also, while we have focused here on neuron
image analysis, we expect the method to be useful for other
applications too, including retinal and vascular image analy-
sis. This will be the subject of future work.

Table 2. Detection performance for synthetic and real neuron
images. Synthetic bifurcations are random angular configura-
tions, Ci, i = 1 . . . 7, with different combinations of branch
diameters, D = 3, 5, 7 pixels, evaluated for SNR = 1, 2, 3.
Listed are recall (R) and precision (P) in percent.

SYNTHETIC IMAGE DATA (1,000 bifurcations)

D D D D DDD D D D D D

SNR C1 C2 C3 C4 C5 C6 C7
1 R 23 22 20 14.3 10.1 11.5 7

P 100 100 100 100 100 100 100
2 R 96.2 94 96.3 90 89.5 94.7 94.4

P 100 100 100 100 100 100 100
3 R 99.1 97.5 97.8 92.5 90.8 93.2 94

P 100 100 100 100 100 100 100

REAL IMAGE DATA (] = number of bifurcations)
I II III IV V VI VII VIII IX

R 92 91 88 91 87.5 94.2 97.2 82.3 90
P 95 91 83 90 97.2 89.1 92.2 86.7 90
] 43 80 106 100 41 39 159 134 22
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