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ABSTRACT
Caenorhabditis elegans is an important model organism for
the study of molecular mechanisms of development and dis-
ease processes, due to its well-known genome and invariant
cell lineage tree. Such studies generally produce vast amounts
of image data, and require very robust and efficient algorithms
to extract and characterize lineage phenotypes and to deter-
mine gene expression patterns. Previously published methods
for this purpose show only mediocre performance and often
require extensive manual post-processing. The challenge re-
mains to develop more powerful and fully automated meth-
ods. In this paper we propose a new algorithm for C. elegans
cell tracking and lineage reconstruction, based on a Bayesian
estimation framework, implemented by means of particle fil-
tering. The tracking is enhanced with a detection stage, based
on the h-dome transform. Preliminary experiments on several
image sequences demonstrate that the new tracking algorithm
is able to reconstruct the lineage tree, at least until the 350-
cell stage, without manual intervention, at low computational
cost and with low error rates.

Index Terms— Caenorhabditis elegans, embryogenesis,
fluorescence microscopy, particle filtering, cell tracking.

1. INTRODUCTION

The nematode worm Caenorhabditis elegans (C. elegans) is a
model organism that is used extensively in biology. Compris-
ing about 1,000 cells, it is the most primitive animal to exhibit
characteristics that are important in the study of human biol-
ogy, the effects of mutations, and various disease processes.
Its well-known genome, rapid generation time, and the fact
that its cell lineage is invariant, describing the fate of every
cell during development to the adult stage [1], make this or-
ganism very suitable for the study and characterization of ge-
netic mutants. An important challenge for geneticists is to de-
sign screens that will identify mutations that specifically dis-
rupt biological processes of interest. Imaging based screens
generate vast amounts of 3D image sequences, and an un-
derstanding of the embryo’s body plan from the data can be

obtained most effectively by reconstructing the lineage tree of
the dividing cells within the embryo [2].

In recent years, some tools have been developed for au-
tomated cell segmentation and tracking in embryogenesis,
based on spherical model fitting [3] or level-set based model-
evolution [4]. The experimental results reported in these
works demonstrated that such approaches work well in the
early stages of development, with relatively small numbers
of cells, but that performance quickly deteriorates in the 200-
350 cell stage, and completely breaks down in later stages,
requiring many hours or even days of manual post-editing
to correct for errors. For comparison of lineage trees in a
high-throughput fashion, it is of critical importance to de-
velop more robust and accurate methods, which are capable
of fully-automated reconstruction with minimal errors until
at least the stage before the last division.

In this paper we propose a new scheme for tracking of
C. elegans embryogenesis. It is based on probabilistic ap-
proaches to object tracking using sequential Monte Carlo
methods, in particular particle filtering, which uses an M -
component mixture model for tracking multiple targets. In
other applications this has been shown to perform superi-
orly compared to non-probabilistic methods [5]. The scheme
is adapted with a new observation model for cell tracking,
and extended with a detection stage based on the h-dome
transform from grayscale morphology, which is capable of
robustly detecting missed cells in very noisy data.

2. METHOD

2.1. Bayesian estimation framework

Using the Bayesian estimation framework we aim to estimate
the position and size of the cells. At each time step t, the
cell is characterized by the state vector st = (xt, yt, zt, ht),
where (xt, yt, zt) denotes the spatial position and ht the size
(radius) of the cell (Fig. 1). Additionally, we know some
premises: it is not possible for new cells to enter the field-
of-view other than by mitosis, and this division is only from
one cell (“mother”) to two cells (“daughters”). Some cells



Fig. 1. Sample 3D rendering of one time step (12-cell stage) of a C. elegans
fluorescence microscopy image data set.

will die in the last stages. The Bayesian tracking approach
is used to recursively estimate a time evolving posterior dis-
tribution p(st|z1:t) that describes the cell state given all the
observations (images) z1:t = {z1, . . . , zt} up to time t. This
probability density function (pdf) p(st|z1:t) can be obtained
recursively in two steps, prediction and update. For the pre-
diction step, the state evolution D(st|st−1) is needed:

p(st|z1:t−1) =
∫
D(st|st−1)p(st−1|z1:t−1)dst−1. (1)

The update step is as follows:

p(st|z1:t) ∝ L(zt|st)p(st|z1:t−1), (2)

where L(zt|st) is the likelihood that relates the noisy mea-
surements (images) to states st. As we are dealing with a
multi-modal problem (we have multiple cells in each time
step), the posterior distribution can be modeled as an M -
component mixture:

p(st|z1:t) =
∑Mt

m=1 πm,tpm(st|z1:t), (3)

where the number of cellsMt changes in time,
∑Mt

m=1 πm,t =
1, and pm(st|z1:t) is the pdf for cell m.

2.2. Particle filters

Particle filters are sequential Monte-Carlo techniques for
estimating the posterior pdf with a set of samples [6, 7].
They approximate the pdf by Ns random measures (“parti-
cles”) associated to Ns corresponding normalized weights
{s(i)m,t, w

(i)
m,t}

Ns
i=1 as

pm(st|z1:t) ≈
∑Ns

i=1 w
(i)
m,tδ(st − s

(i)
m,t). (4)

The weights are updated according to

w
(i)
m,t ∝ w

(i)
m,t−1L(zt|s(i)m,t), (5)

and s
(i)
m,t are obtained by means of the dynamic model

D(st|st−1). In our case, the motion of the cells is random, so
the dynamic model is a random walk (using a normal distri-
bution, where the mean is the position of the cell at time t− 1
and the variance is the variance of the surviving particles). In
each iteration, particles with low weights will be removed,
and only Ne with significant weight will survive, where

Ne =
1∑Ns

i=1(w
(i)
t )2

. (6)

At each time step t, we define the estimated state of the cell,
ŝm,t, by a maximum a posteriori (MAP) estimate, given by
the particle s

(i)
m,t with the highest weight.

2.2.1. Observation model

For each cell, the likelihoodL(zt|st) of the state sm,t depends
on the size and location of the cell. The model is depicted
in Fig. 2. Using the average image intensities in the three
different regions (the center µc, inside µi, and outside µo),
the corresponding variances in those regions (σi, σo), and the
numbers of pixels that were used to compute the means and
variances (ni, no), we define the likelihood as

L(zt|sm,t)=


(

µi − µo√
σ2
i /ni + σ2

o/no

)2

·Φ, µc≥µi>µo,

0, otherwise,
(7)

where

Φ =

Mt∏
m′=1,m′ 6=m

φ(dm,m′)

penalizes particles close to other cells, with dm,m′ the spatial
distance between the states sm,t and ŝm′,t, and φ(d) ≈ 0 if d
is small and φ(d) ≈ 1 if d is large.
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Fig. 2. 2D representation of the real 3D observation model. The estimated
positions of the neighboring cells n and q are marked with “+”, and the dis-
tances from them to the hypothesized location of the cell m are denoted by
dm,n and dm,q . The gray areas represent the image regions, which are used
to compute the average intensities µi, µo, and µc.



2.2.2. Division and death of cells

One of the most important aspects of tracking embryogene-
sis image sequences is how to detect cell divisions. For this
purpose we use the mean-shift clustering technique [8]. With
this method, we detect if the particles associated to a cell are
divided in one or two clusters. When the center of the two
clusters is separated more than the typical cell size, we de-
termine that the cell has divided (Fig. 3). Near the 350-cell
stage, some cells start to die. In our algorithm, we detect a
cell death event when the variance of the particles is too high
or the number of particles is too small.

2.3. Detection with h-dome transform

During cell division, tracking may fail if the daughter cells
move too far with respect to the original cell position in the
previous frame. Furthermore, if cells are missed, mismatches
may occur. To avoid these problems, a detection stage is
added, based on the h-dome transform, which will detect any
possible missed cells. The transform “cuts off” structures of
a predetermined height from the top around local intensity
maxima, producing “dome”-like structures [9]. The h-dome
image Dh(I) of an image I is given by

Dh(I) = I − ρI(I − h) (8)

where the grayscale reconstruction ρI(ψ) of image I from an
image ψ (I ≥ ψ) is obtained by iterating grayscale geodesic
dilations of ψ “under” I until stability is reached [10]. Geo-
metrically speaking, an h-dome D of image I is a connected
component of pixels such that every pixel p, neighboring D,
satisfies I(p) < min{I(q)|q ∈ D} and max{I(q)|q ∈ D} −
min{I(q)|q ∈ D} < h. In this case, as we only want to find a
small number of objects (lost cells), h can be easily estimated
from the existing cells and is not critical, and we avoid detect-
ing noise that could be interpreted as a cell. If missing cells
are detected, they are back-tracked with the particle filtering
algorithm and matched with the correct mother cell.

3. RESULTS

3.1. Images

Four image sequences (of size 500 x 700 pixels x 31 slices x
250 time steps and of varying quality) of C. elegans embryo-
genesis were analyzed with the proposed method. To reduce
computation time, the images were downsampled in x and y
by a factor of 3. In these preliminary experiments (except in
one of the sequences, where annotations were available only
until the 180-cell stage), tracking was performed from the 4-
cell stage until the 350-cell stage, the latter of which has been
shown in previous works [3] to be a critical stage where ex-
isting methods break down.

Fig. 3. Example of cell division. In the right image, two clusters of particles
are found (for a given cell) that are well separated (distance larger than the
typical cell size), whereas in the left image (previous frame) they are not,
indicating that a cell division has occurred.

Fig. 4. Lineage tree (top) obtained for one of the sequences until the 100-
cell stage and a 2D projection (bottom) of the image data at the latter stage
together with the found center positions (indicated in green).

3.2. Validation

The efficiency and accuracy of the proposed method was
tested. The output positions of the cells were compared with
expert manual annotations. One example of a resulting lin-
eage tree, starting with four cells (EMS, P2, ABa, ABp), is
shown in Fig. 4. The tracking results were binned into a lim-
ited number of critical stages (ranges of numbers of cells) as
in [3]. Errors were classified into false negatives (incorrectly
lost cells), false positives (incorrectly detected new cells),
and errors of cell division (a correctly tracked cell division is
one for which the mother and the two daughter cells are all
correctly identified and matched).



Fig. 5. Error rates for false negatives (FN) and false positives (FP) for each
of the four image sequences (Sx).

Fig. 6. Error rates for tracking cell divisions in each of the four sequences.

Error rates for false negatives and false positives are
shown in Fig. 5, while division errors are shown in Fig. 6.
The error rates are relatively low, especially in the early em-
bryonic stages. The difference in error rates between the four
sequences is mainly due to the difference in image quality
(the sequences are numbered in the order from highest to
lowest quality), where sequences with lower quality usually
have higher error rates, as expected. The majority of errors
found in our experiments are false negatives and false posi-
tives, and are comparable to [3], while the errors in tracking
cell divisions are slightly lower.

The downsampling step does not affect the FN and FP
error rates in the first stages, where cells are still relatively
large and well separated. In the last stages, the error rates
could be lowered by keeping a higher resolution, but the re-
quired extra computation time was too high compared with
the achieved improvements. Currently, the computation time
of the algorithm is around 1.5 hours for each sequence, with
an implementation in Matlab and Java (for the more time con-
suming parts), running on a standard PC (Intel Xeon Quad-
Core 2.26GHz CPU with 12GB RAM). Further optimization
of the code is possible.

4. CONCLUSIONS

In this paper, we have proposed a novel particle filtering based
method for cell tracking of C. elegans embryogenesis, en-
hanced with a detection stage implemented with the h-dome
transform. The method is built within a Bayesian estimation
framework, incorporating prior knowledge about cell behav-
ior and appearance. The results of validation experiments on
four sequences until the 350-cell stage by comparison with
expert manual annotations show that the method is able to re-
construct lineage trees with low error rates. Our future work
will address reaching the later stages of development while
maintaining low error rates.
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