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Abstract

Quantitative analysis of biological image data generatiyolves the detection of many subresolution spots.
Especially in live cell imaging, for which fluorescence naiscopy is often used, the signal-to-noise ratio (SNR) can
be extremely low, making automated spot detection a verflastging task. In the past, many methods have been
proposed to perform this task, but a thorough quantitatixa@uation and comparison of these methods is lacking
in the literature. In this paper, we evaluate the performeaot the most frequently used detection methods for
this purpose. These include seven unsupervised and twovisgre methods. We perform experiments on synthetic
images of three different types, for which the ground truthsvavailable, as well as on real image data sets
acquired for two different biological studies, for which wbtained expert manual annotations to compare with.
The results from both types of experiments suggest thatdor bw SNRs £2), the supervised (machine learning)
methods perform best overall. Of the unsupervised methbdsietectors based on the so-calledome transform
from mathematical morphology or the multiscale varianebitizing transform perform comparably, and have the
advantage that they do not require a cumbersome learnigg.st high SNRs £5), the difference in performance
of all considered detectors becomes negligible.

Index Terms

Fluorescence microscopy, image filtering, machine legrnioise reduction, object detection.

. INTRODUCTION

HE very first stage in the analysis of biological image dataegally deals with the detection of objects of

interest. In fluorescence microscopy, which is one of the rbasic tools used in biology for the visualization
of subcellular components and their dynamics [1]-[6], thgeots are labeled with fluorescent proteins and appear in
the images as bright spots, each occupying only a few pigels Fig. 1 for sample images). Digital image analysis
provides numerical data to quantify and substantiate bio&d processes observed by fluorescence microscopy [7]-
[11]. Such automated analysis is especially valuable fdniigoughput imaging in proteomics, functional genomics
and drug screening [12], [13]. Nevertheless, obtainingieste and complete measurements from the image data
is still a great challenge [14]. In many cases, the qualityhef image data is rather low, due to limitations in the
image acquisition process. This is especially true in livik iogaging, where illumination intensities are reduced
to a minimum to prevent photobleaching and photodamageltiresg in a very low signal-to-noise ratio (SNR)
[15]-[17]. In addition, despite recent advances in impngvoptical microscopy [18], [19], the resolution of even
the best microscopes available today is still rather coéosethe order of 100 nm) compared to the size of
subcellular structures (typically only several nanongiardiameter), resulting in diffraction-limited appeacan
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As a consequence, it is often difficult, even for expert bidtsy to distinguish objects from irrelevant background
structures or noise.

In practice, automated object detection methods applifiddoescence microscopy images either report too many
false positives, thus corrupting the analysis with the @nes of nonexistent objects, or they detect less objects
than are in fact present, causing subsequent analyses t@m&edktowards more clearly distinguishable objects.
This is also a serious issue in time-lapse imaging, where bfjects of interest are to be tracked over time to study
their dynamics. In common tracking algorithms, which cethsf separate detection (spatial) and linking (temporal)
stages [16], [17], the performance of the detector is ctupi@or detection likely causes the linking procedure to
yield nonsensical tracks, where correctly detected objgcbne frame are connected with false detections in the
next (and vice versa), or where tracks are terminated prewigitbecause no corresponding objects were detected
in the next frame(s). Modern tracking approaches, basedayed®an estimation [20], [21], avoid the hard decision
thresholds in the detection stage of conventional appemdand describe object existence in terms of probability
distribution functions (pdf). Such real-valued pdfs refléwet tlegree of believe in the presence of an object at any
position in the image in a more “continuous” fashion, in cast with the binary representation (either “present”
or “not present”) obtained after applying hard threshoMevertheless, even in probabilistic tracking frameworks,
some form of “deterministic” object detection is still nesary in the track initiation and termination procedures
[20]-[22], again illustrating the relevance of having a d@pot detector. Several detectors have been proposed in
the literature, and the classic, relatively simpler methbdve been compared previously for tracking [23], [24],
but a thorough quantitative comparison including recerdrentomplex methods is missing.

In this study, we compare several detectors that are frelyuesed for object detection in fluorescence microscopy
imaging, and quantify their performance using both symthetages and real image data from different biological
studies. The sensitivity of the methods is studied as a fonaif their parameters and image quality (expressed in
terms of SNR). The methods under consideration range fromiveiasimple local background subtraction [11],
to linear or morphological image filtering [21], [22], [25R]], to wavelet-based multiscale detectors [29]-[31],
and machine learning methods [32]. They can be divided intodvoups: unsupervised and supervised. The first
consists of algorithms that (implicitly or explicitly) asme some object appearance model and contain parameters
that need to be adjusted either manually or semi-autontigticaorder to get the best performance for a specific
application. Supervised methods, on the other hand, “letm@’object appearance from annotated training data—
usually a large number of small image patches containing thrd object intensity profiles (positive samples) or
irrelevant background structures (negative samples).

This paper is organized as follows. First, in Section Il, we mewackground information on the image formation
process in fluorescence microscopy and describe the objesttide framework in general. This helps to put the
different detection methods in proper perspective andigesvmotivations for some of the choices made later on in
the paper. The detection methods that were considered isttidy and that implement the general framework are
described in Section Ill. Next, in Section IV, we present thpezimental results of applying the detection methods
to synthetic images, for which ground truth was availabtewall as to real fluorescence microscopy image data
from several biological studies. A concluding discussidrthe main findings and their implications is given in
Section V.

II. DETECTION FRAMEWORK FORFLUORESCENCEMICROSCOPY
A. Image formation

In fluorescence microscopy, specimens are labeled with flhores. The distribution of fluorescence caused
by exciting illumination is then observed and captured byhatpsensitive detector (usually a CCD camera or a
photomultiplier tube) that measures the intensity of théttexh light and creates a digital image of the sample. The
objects of interest in our application appear in images agdxd spots, which are relatively small and compact, have
no clear borders (which is why we prefer to speak of “deteCtrather than “segmentation” in this paper), and their
intensity is higher than the background. The blurring is edusy the diffraction phenomenon and imperfections of
the optical system, which for commonly used confocal micopgs limits the resolution to about 200 nm laterally
and 800 nm axially [11], [16], [27], [33]. This is charactex@z by the point spread function (PSF) of the system,
which is the image of a point source of light. In our applioas, the theoretical PSF, which can be expressed
by the scalar Debye diffraction integral [33], can in preetbe very accurately approximated by a 2-D or 3-D
Gaussian PSF [27], depending on the dimensionality of the éntkda.
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Fig. 1. Sample images of microtubules (a, b, d) and peroxisomes @petalvith green fluorescent protein (GFP) and imaged using confocal
microscopy. The images are single frames from 2-D time-lapse stuatigaired under different experimental conditions. The quality of the
images ranges from SNR4-6 (a, c) tox2—-4 (b, d).

Apart from the diffraction-limited spatial resolution,@her major source of aberrations introduced in the imaging
process is intrinsic photon noise, which results from thedoem nature of photon emission. Photon noise (Poisson
noise), which is independent of the detector electroniddifey Gaussian noise), can be reduced (and, consequently,
the SNR increased) only by increasing the light intensity lee &xposure time. However, increasing the light
intensity in order to improve the image quality causes theréscent signal to fade permanently due to photon-
induced chemical damage and covalent modification, a praéesl photobleaching [11]. While this effect can be
exploited to study specific dynamical properties of partdiktributions [3], [34], it hampers detection and tracking
of individual fluorescent particles. With a laser as exdaiatsource, photobleaching is observed on the time scale
of microseconds to seconds, and should be taken care ofiabpét time-lapse microscopy.
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NOISE REDUCTION SIGNAL ENHANCEMENT SIGNAL THRESHOLDING
Input: Output: Output: grayscale Output:
noisy image A denoised image j classification map C binary classification map CB
Examples: Examples: Examples: Examples:
fluorescence microscopy Gaussian smoothing, background subtraction signal magnitude thresholding with possibly
image from 2D+time stack| wavelet denoising (top-hats, h-domes, etc.) additional size and/or shape thresholding
l@ l® l© K0 le©

Fig. 2. Object detection framework. The original noisy image (a) is npegssed with some noise reduction method, and the resulting
image (b) is transformed (enhanced) into a new image (c), in which thsilpe object locations have higher signal magnitude than all other
structures (d), or all the suspicious locations are marked (e). Thehitice (represented by the dark-gray planes in (d) and (e)) is applied
and the connected components in the binarized image (white clusters olathkebbckground) are counted as the detected objects.

In this study, we deal with subresolution objects (blurrgbts) on a possibly nonuniform background, the
appearance of which can be modeled using a Gaussian appitoxinof the PSF. Since the majority of live-cell
imaging and high-throughput studies are based on 2-D image (dr very few optical slices), we limit the method
descriptions and experiments to 2-D. Nevertheless, adlatien methods considered in this paper can be extended
straightforwardly to 3-D without any substantial chang€ach imageZ consist of N, x N, pixels, where each
pixel corresponds to a rectangular area of dimengignx A, nm? and the measured intensity at positign;) is
denoted ad (7, j). In other wordsZ = {I(¢,j) : i =1,...,Ng,j=1,...,Ny}. In order to model different types of
subcellular particles (round or elongated appearance)isgean asymmetric 2-D Gaussian function. In this case,
the measured intensity &i,j) caused by the fluorescent light source locatedzxay), which is the real-valued
position within the image, is given by

1
I(i,j) = B(i,j) + exp <—2mTRT2—1Rm> , (1)

whereX = diago2,,, 02, R = R(¢) is a rotation matrix

min
- cos¢ sing (A —x
R(¢) = <—sinq§ cosqb) M= <jAy —y) ’

and —m < ¢ < 7 defines the rotationB(i, j) is the background intensity distribution, and the paransetgax
and onmin represent the blurring induced by the PSF and, at the same riilodel the elongation of the object. For
symmetrical subresolution structures such as vesielgs, = omax &~ 80—-100 nm, and for the elongated objects,
such as microtubulegyin, =~ 80—100 Nm andrmax ~ 250-300 nm [20], [27]. Concerning the density of objects in
our applications, typical 512512-pixel images contain around 50—-200 objects.

B. Detection Framework

Before we describe the different detection approachesuated in this paper, we first consider the detection
framework in general (Fig. 2). This framework can be split itlicee subsequent steps. Each detector considered
in this paper includes these steps, but may implement theandifferent way. In practice, some of the steps are
optional or can be combined. Taking as input the noisy imagegining the objects of interest, possibly embedded
in a nonuniform background (Fig. 2(a)), the detector prosessifollows:

Step 1 (Noise ReductionThe input imageZ is preprocessed using noise reduction techniques. In nasstsc
Gaussian smoothing [35] or matched filtering [36] is used.cWimay increase the SNR and improve image quality
and object visibility. The output of this step is a filtered irra@ (Fig. 2(b)).
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Step 2 (Signal Enhancementh this step, signal processing techniques are used thaneehthe denoised
fluorescent light signabnly in those regions of the imag& where the actual objects are and, at the same time,
suppress the light signal from all the background struestuf@at is, the imagg/ is transformed to a new grayscale
imageC (Fig. 2(c)), also called here the grayscale classification,mdpch does not necessarily represent the
object intensity distribution anymore. At this stage, thegeC is rather a 2-D (or 3-D) signal, the value of which
at any pixel measures the certainty in the object presenteaatposition. In other words, the imagecan also
be considered a probability map that describes possibkecbhjcations. Two examples of this classification map
are shown in Fig. 2(d) and Fig. 2(e), where the imé&ge Fig. 2(d) is the result of applying a correlation based
technique (in this case a matched filter), which convolvedrttege 7 with a PSF-like kernel and produces a high
response in regions where objects are present (where tlyeimgensity distribution matches the kernel), and a low
response in all other image regions, suppressing the bagkdrstructures. The imaggin Fig. 2(e) corresponds
to the situation where local background subtraction is useskd on thé-dome transformation [37], which “cuts
off” the local maxima in the image/ in the dome-like shape of equal heights.

The described feature enhancement step does not actuadlst fieditures or objects. At this stage no quantitative
information (about the object presence, its position,,st€e.) can yet be extracted and it is still up to the observer
to visually link pixels that belong to one object.

Step 3 (Signal Thresholding)o obtain the number of objects and extract position infaiomafrom the grayscale
classification map, hard (binary) decision thresholds neelet applied. First, the image is thresholded, where
the threshold, is applied to the signal magnitude and the binary iggs obtained (Fig. 2(d,e)). Disjoint clusters
of connected nonzero pixels @ correspond to detected objects and can be used to labelxbls pi the original
image Z for subsequent analysis of the object intensity distrioutiDepending on the imag@, the result of
thresholding may be sensitive to the valuel gfin that case, a second threshelgd= (vmin, vmax) May be applied
to the size and/or shape of the clusters: only those clustefg with size larger thanmi, and smaller thammax
are labeled as detected objects.

In practice, the signal thresholding with does not always produce fully connected regions (clustexels)
in Cp, in places where the true objects are located. In most casesuse the noise is not completely removed
during Step 1, clusters of nonzero pixelsdp that belong to the same spot are not connected or containesis
zero-pixels inside the cluster. In order to solve this peahl the closing operation from mathematical morphology
[11], [38], [39] is frequently used as a postprocessing.step

IIl. DETECTIONMETHODS

In this section we describe the detection methods that wietaded in our study. All of them implement the three
main steps of the general detection framework presentdtkiprevious section. Some of the methods require noise
reduction as an explicit preprocessing step to improve éteation performance, and in our analysis we include two
filtering techniques for this purpose (Gaussian smoothirthveawvelet denoising) that are computationally fast, easy
to implement, and which are frequently used in practice {8edtl-A). Several alternative (nonlinear) prefiltering
techniques are also discussed.

The most characteristic feature of any detection method isnplementation of the second step of the framework
(signal enhancement). As pointed out in the introductior, make a distinction between unsupervised (Section
[1I-B) and supervised (Section IlI-C) detection techniqu8sme of them inherently reduce noise and thus do not
require an explicit noise reduction step. The third stepn@ighresholding) determines the final outcome of the
detector, which is used to assess its performance. In thedasection (Section 11l-D) we describe how performance
was measured in our study.

A. Noise Reduction

1) Gaussian SmoothingNoise reduction in this case consists of smoothing the maigimageZ with the
Gaussian kernelr, at scales. The filtered image7 is obtained as

N, N,
J(i,§) = (Go x I)(i,§) = > Y Goli—i,j— )i, j"), 2

i'=1j'=1
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where * denotes the convolution operation. (Here, and inrés¢ of the paper, for all methods that require the
convolution of an image with a filter kernel or mask, the imagenirrored at the borders.) In the case of additive
uncorrelated noise, this smoothing can be related to matthering [36], which maximizes the SNR in the filtered
images. This is because the PSF, which models the appearate@sifiy profile) of the subcellular objects, can
be approximated to a high degree of accuracy by a GaussignTB8 smoothed image/ can also be used as
the grayscale classification m&p due to the fact that the imag® is a correlation map that shows where objects
similar in shape to the PSF are located. The object locationdeaxtracted by thresholding the imagein Step

3 (see Fig. 2), but this approach does not work in practiceyfuicél images, which usually contain inhomogeneous
backgrounds and varying object intensities.

2) Isotropic Undecimated Wavelet Denoisinghis wavelet-based filtering technique is frequently usednf@ge
denoising in different applications [40], but also for loliilg a separate detection procedure (Section I1I-B1) [30],
[31]. The isotropic undecimated wavelet transform (IUWT)][481] is well adapted to the analysis of images which
contain isotropic sources, such as in astronomy [41] or atolly [30], [31], where the object appearance or shape
is diffuse (no clear edges) and more or less symmetric. Theisieg is accomplished by modifying the relevant
wavelet coefficients and inverse transforming the result. TH&T is usually favored over orthogonal discrete
wavelet transforms (DWT) for this purpose [42]. Contrary be DWT, the IUWT is redundant, but translation
invariant, and the wavelet coefficient thresholding usinguadecimated transform rather than a decimated one
normally improves the result in denoising applications][43

We used the B3-spline version of the separable 2-D IUWT [BU]], which decomposes the original image into
K wavelet planes (detail images) and a smoothed image, alleofame size as the original image. The im@ge
is first convolved row by row and then column by column with tHe Kernel [1/16, 1/4, 3/8, 1/4, 1/16], which
is modified depending on the scaleby inserting2*~! — 1 zeros between every two taps. The image; (i, 5)
is convolved with the kernel giving a smoothed ima@é:, j), and the wavelet plane is computed from these two
images as

Wieli, §) = Ii-1(i ) — In(i, §), 0 <k < K, (3)

wherely(i,j) = I(i, 7). Having the wavelet representation as a sekof 1 images,W1, ..., Wk, Ik, also called
the a trous wavelet representation, the reconstruction carabityerformed as

K
I(i,5) = I (i, 5) + > Wili, §). 4)
k=1

For denoising and object detection, the property of the ledsdo be localized in both space and frequency
plays a major role, as it allows separation of the componehftan image according to their size. The large
values of Wi(i,j) correspond to some structures and the smaller ones usoaiipise. The denoising is based
on the modification of the imagdd’;(i, j), by hard-thresholding the coefficients, and using the modifieabes
Wk(z’,j) = Ty(W}) in the inverse transformation (4). Here, the thresholdipgratorT, : 7 — Z*" is defined as

thy; I(i,5), i |[1(i,5)] = d,
76.5) = {O, otherwise. ®)
The hard threshold depends on the standard deviation of the wavelet coefficieniser resolution level, and is
usually taken to b&c.. Alternatively, the wavelet coefficients may be soft-thiddied according to more advanced
schemes [44], [45]. However, for astronomical and also fololgical images, soft thresholding should be avoided,
as it leads to photometry loss in regard to all objects [44].

In order to reduce the dependence of the threshbloh the absolute values of the object and background
intensities, the thresholding is often based on Bayesialysis of the coefficient distributions using Jeffrey’s
noninformative prior [45] (also called the amplitude-gcaivariant), which is a nonlinear shrinkage rule that
outperforms other famous shrinkage rules, including Visufkhand SureShrink [45], and is given by

Wi, 3) = Wi (i, 1) (Wi i, §) = 307)+, (6)
where (z)1 = max{z,0}. The threshold is proportional to the standard deviation afelet coefficients at each

resolution level and it adaptively selects significant coiffits only. The modified filtered imagé#},(i, j) are
used in (4) for the inverse transformation to obtain the ttbimage”.
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3) Patch-Based DenoisingNoise can also be reduced to some extent while preservireciobppearance by
using median filtering [39], maximum homogeneity neighboHN) filtering [46], bilateral filtering [47], mean-shift
filtering [48], and anisotropic diffusion [49]. Among the nimear methods, the recently proposed patch-based noise
reduction technique [50] possesses an important disaatytipreserving property, which was shown to be important
for the detection of small objects embedded into a noisy dpacind [51], [52]. In our study, we compared the
performance of detection based on Gaussian smoothing aletadenoising with preprocessing using patch-based
noise reduction.

4) Variance-Stabilizing Techniquedn order to apply the described noise reduction methodsraly, it is
usually assumed that the images are corrupted by additivesim noise, where the noise variance is independent
of the signal. As mentioned in Section II-A, the intensity inoflescence microscopy images is corrupted either by
Poisson noise, or a mixture of Poisson and Gaussian noise. fieeitamore common in practice, because even
though the influence of all noise sources (thermal, readagntigation noise, etc. [53]) except photon noise can
be made very small, it cannot be completely eliminated.

In order to make the noise variance constant over the whobgémnseveral variance-stabilizing techniques
can be used. For the pure Poisson case, the variance-stepi#inscombe transform [54] can be applied, which
transforms the image intensities according/te, j) — 2./1(i,j) + 3/8, and creates approximately Gaussian data
of unit variance, provided that the Poisson data has a meae laiger thari0 [54]. For mixed Poisson-Gaussian
processes, the generalized Anscombe transform (GAT) isllysajplied [51], [55], where the transformation
parameters can be estimated from the image data, for exansplg non-parametric regression [51]. Another
variance-stabilizing transform that outperforms (and benreduced to) the GAT is proposed in [29], which is
applicable to Poisson data with mean value less tttaror to mixed Poisson-Gaussian data.

B. Unsupervised Signal Enhancement

1) Wavelet Multiscale ProductAs mentioned in Section 1lI-A2, in tha trous wavelet representation, contrary to
the frequently used orthogonal wavelet transform [42], wlaeelet coefficients are correlated across the resolution
levels (scales). This property is exploited by the detectipproach based on the multiscale product [31], which
uses the same image decomposition as in Section 11l-A2 arates¢he multiscale product image as

K
Prc(i,j) = [T Wa(i, ). (7)
k=1

This transformation constitutes Step 2 in the general deteftamework (Section 11-B). For better performance, the
original algorithm [31] also includes a noise reductiorpgiBtep 1) using the technique described in Section I11-A2:
the wavelet coefficients are hard-thresholded per sd/ﬁlgi,j) = Ty, (Wk(i,7)), with the thresholdi, = kg0,

kq = 3, and the modified coefficientd’;, (4, j) are used in (7).

This method uses the fact that the real objects are represbpta small number of wavelet coefficients that are
correlated across the scales. Contrarily, the coefficidr@sdre due to noise are randomly distributed and are not
propagated across scales. As a result, the infage, j), which is the grayscale classification mé@pis thresholded
with [; and binarized. The connected components in the binary @gapre considered as detected objects (Step
3). In the original algorithm [31]{; = 1.0 and no thresholds on the cluster sizein the thresholded and binarized
Pk (i, 7) were imposed [31]. In summary, this method has three pasmély, k,, K), that are not directly related
to the object appearance. Recently, a modification of theritbest method, which uses the Gaussian kernel at
several scales instead of B3-splines, was proposed foresggtion and analysis of nuclear components in stem
cells [56].

2) Multiscale Variance-Stabilizing Transform Detectdknother detection scheme based on #éhieous wavelet
decomposition was presented in [29]. This method uses théiscale variance-stabilizing transformation [29],
which is applied to eachy. (i,j), ¥ = {k — 1,k} in (3), before computing the correspondifigy (i, 7). Then,
the significant wavelet coefficients are detected per wavédeiepby performing multiple hypothesis testing based
on Benjamini-Hochberg procedure, which controls the falseovery rate (FDR) [29]. The control of the FDR
usually has a greater detection power and can be appliedrielated data, which is important due to the fact
that thea trous representation is overcomplete. For the actualcbbletection, the pixel values ifx (i, ) and
all the insignificant wavelet coefficients are zeroed, and gw®mstruction (4) is performed. In the reconstructed



IEEE TRANSACTIONS ON MEDICAL IMAGING 8

image, which is the grayscale classification niaghe background will be largely removed but smaller ob|i&-
structures retained. The mapis binarized by thresholding the negative pixel values tmz&hen, the connected
components of nonzero pixels @iy are counted as detected objects. In summary, the methodvbgsarameters,
(K, v), that are not related to the object appearance, whetentrols the FDR and usually is in the range of
10719 — 1072,

3) Top-Hat Filter: Another class of methods that are used for detection of begbts in the presence of widely
varying background intensities is known as top-hat filte&,[{26]. Such filters are dynamic thresholding operators,
rather than the similarly named image transformation froathmmatical morphology. The latter transformation
selects extended objects with sufficiently narrow partdherathan compact objects, as does the top-hat filter
considered here.

The filter discriminates the spots by their round shape andepeedined information about their intensity and
size. At each pixel locationy, j), the average image intensit@op and Iyim are calculated for pixels within two
circular regionsDyop and Dyyim, respectively, defined as

Digh=A{(i",5) : (1 =) + ( — J')* < Rigg}, (8)
szrji‘m = {(ilujl) : Rt20p < (Z - i/)Q + (] - j/)z < R%rim}7 (9)

where the radiugip corresponds to the “top” of the “hat” and is set to the maximexpected spot radius. The
brim radius, Rprim (Rbim > Riop), IS Often taken to be the shortest expected distance todighimoring spot. If the
differenceliop — Inrim is larger than some threshold,;,, the original image intensity (i, ;) for that position(i, j)

is copied to the classification map C(i, ) = I(i,j), otherwiseC(i, j) = 0. The procedure is repeated for each
pixel, and the binary magp (Step 3) is obtained a85(i,j) = 1 if C(i,5) # 0, andCp(i,j) = 0 otherwise. The
connected components are counted without any size or shagshold.

The heightHy;, of the top above the brim is set to the minimum intensity thsppat must rise above its immediate
background. It can also be related to the minimum local SNRwleaare willing to deal with. If the detection of
all the objects with local SNR> « is required, because for lower SNRs the detector would peduft more
false positives and contaminate the analysis, the thrdsHg] can be fixed taiopim, Whereopim is the standard
deviation of the intensity distribution in the regiddyn.

In summary, the described algorithm has only three paras&td,,, Riop, Rorim), Which can be related to the
object appearance. The noise reduction (Step 1) in this caswigitly done while calculating the average image
intensitiy Iiop and Ipim. The averaging decreases the variance in the estimatioreafdisy object and background
intensity levels and improves the robustness and perfacemai the method. A slightly modified version of the
filter, called the top-hat box filter [26], uses a square maskHerregionsD;op and Dyim and is computationally
faster, but in the present context this is not an importanaathge.

4) Spot-Enhancing FilterThe optimal filter for enhancing subresolution particles agtlicing correlated noise
in microscopy images is the whitened matched filter, which &l wpproximated by the Laplacian of a Gaussian
(LoG) [28]. In this case, the convolution kern@o? — i — j2)o*G,, is used in (2) to obtain the imagg, where
the filter parametes;, must be tuned to the size of the particles. The filter combinegsSteand 2 and operates
as a local background subtraction technique that presetvjest-like structures and removes the background and
noise. The filter can be made computationally fast by sepaiatpéementation [28]. The result of LoG filtering,
the image7, is used as the classification mé@pwhich is thresholded witly; to locate the objects. This detection
procedure has two parameters (l;), and is similar to the top-hat filter (Section I111-B3), withetldifference that
here the convolution kernel, also called the “Mexican hapresents a continuous version of the top-hat filter
mask.

5) Grayscale Opening Top-Hat FilterSimilar to the method above (Section IlI-B3), this top-hat filbses the
opening operation from mathematical morphology [38], [§9]]. In order to improve the detector performance,
the original imageZ is first smoothed with the Gaussian kernel with scalgStep 1) and the grayscale opening of
J with a structuring elemend is done, producing the imagg,, where in our case a flat disk of radiug is used.
The radiusry is related to the size of the largest objects that we woule tik detect. The top-hats are obtained
after the subtractio® = J — Ja (which concludes Step 2), and the whole transformation axta background
subtraction method that leaves only compact structurefientlaan the diskA, or extended objects with sufficiently
narrow parts, rather than compact objects only, as doesotirédt filter. The resulting imagé is thresholded at
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level I; (Step 3), and then all the connected components are countititiohal filtering withv, can be done if
the size of the connected components should be taken intmwatccThus, this method has four parametess,r(,
lq, vg), all of which can be related to the object appearance.

6) H-Dome Based DetectionAnother approach borrowed from grayscale mathematicaphwogy is based
on the h-dome transformation [37], which was used in our previousk&amn subresolution particle tracking to
design a detection scheme for track initiation and ternonaf21], [22]. The transformation has the interesting
property that all the detected objects end up having the sam@mum intensity in the transformed image, which
we exploited to build a fast probabilistic tracker that arfprms current deterministic methods [22] and at the
same time has the same tracking accuracy as the computhtior@e expensive particle filtering approaches for
tracking [20], [22].

For this method we assume that the intensity distributiothenimageZ is formed by N, objects (bright spots),
modeled using (1), background structures (also callederjutvith intensity distributionB (i, j), and possibly
spatially correlated additive or multiplicative noigéi, j). The main problem is to accurately estimate the number
of real objectsV, and the object positiong:;, y;)*, 1 = {1,..., N,}, in the presence of inhomogeneous background
structures and noise. The algorithm also consists of thegessfiltering,~,-dome transformation, and “sampling”
(signal thresholding). First, the imadeis LoG filtered with scaler,, which enhances the signal in the places where
objects are present and performs local background suioina®tep 1). The scale; can be related to the size of
the objects to be detected, and in our experiments is equabtpixels (125 nm). Then, grayscale reconstruction
[37] is performed on the LoG-filtered imaggé with mask image7 — h, whereh > 0 is a constant (Step 2). As a
result, the original image is decomposed into the recoasduiimage3, and the so-called-dome imageH,,:

Z5(i,J) = Ho(is j) + Bo (i, j)- (10)

Geometrically speaking, similar to local background sadtion, theh-dome transformation extracts bright structures
by “cutting off” the intensities of height: from the top, around local intensity maxima, producing “@drhke
structures. Contrary to top-hat filtering [37], this doesingblve any shape or size criteria. The imdgerepresents
the nonuniform background structures, and imagecontains the objects and all the smaller noise structures.

After the transformation, the maximum intensity of thoseu&aan-like objects is approximatety and for the
noise structures the amplitude is less thaj22]. This transformed imageé{, is used as a probability map for the
final step of the algorithm (Step 3): the sampling. During thiepsall the pixel values irt, are raised to the
power s in order to compensate for the broadening of the originagéahintensity distributions by the convolution
with the LoG filter, and to create a highly peaked function tiesembles the probability density function (pdf) of
the object location distribution. The parametetan be related to the maximum and minimum object size and the
scaleoy, [22]. The functionH;(i,5) = (J(i,5) — Bs(i,7))® is used in our framework as a so-called importance
sampling function [58], denoted by(i, j|Z), that describes which areas of the image most likely contiaén
objects. We sampléV position-samples frony(i, j|Z) using systematic resampling [58 ~ ¢(i,j|Z), where
l={1,...,N} andx = (i,7), in order to estimate the object positions using Monte Carkthods. Then, the
mean-shift algorithm [48] is used to cluster the sampigsresulting inM clusters. For each cluster, the mean
positionx. = (i., j.) and the variance?, are computed using only th¥,. samplesx’ belonging to that cluster:

xe = E[xt] = N7 S0 x,
R = E[(ch - XC)(Xi - XC)T]~

The following two criteria are used to distinguish betweeal r@bjects and other structures: 1) the number of
samplesN, in the cluster should be larger than the number of samplesage of sampling from the uniform
intensity distribution in the image region occupied by thester, and 2) the determinant of the covariance matrix
of the cluster, de®., must be less thanﬁ,l/SQ, where oy characterizes the maximum object size that we are
interested in. These two thresholds are motivated by thetlfi@ttthe elements of the estimated covariance matrix
R, using the samples generated from the intensity distributibthe real objects, are bounded from above by
(02.x+ 0%)s~ 1. The samples that came from noise have approximately the sari@nce . ~ 0?1s~ '), where
I is the identity matrix, but since the intensity amplitude /, the number of sampled’. in the corresponding
cluster will be below the mentioned threshold. The cluttetttua other hand, having possibly high intensity values
(=~ h), produces a large number of samples, but the variance setbtusters is higher than in the case of the
largest real object characterized by.

(11)
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The parameters; and o), of this detection method can be related to the object appearda he height: is
related to the SNR in the same way as in the case of the top-tat @ection 111-B3). The method is fairly
insensitive to the free parametersand N [21], [22] (above some minimum, sensible values, which caridund
experimentally and then fixed, these parameters primarfigcathe computational cost of the method, not its
accuracy). Thus, in summary, this method depends mainly i@ tharametersg(,, o, h), that need to be tuned
to the application.

7) Image Features Based Detectiomhe last unsupervised method that we consider in this studyased on
using some additional image information during Step 2 thatld/dielp to distinguish the spots from the clutter. As
was shown previously [20], [27], the incorporation of locakvature information can be used to build a reasonably
good detector for image data with SNR 4. The true spots in the image are characterized by a comhmatio
convex intensity distributions and a relatively high irgi#y Noise-induced local maxima typically exhibit a rando
distribution of intensity changes in all directions, leaglito a low local curvature [27]. These two discriminative
features (intensity and curvature) are used in combinatimng Step 2 to create the grayscale classification map
C using the denoised image (Step L), j) = (G, = I)(i, ) as follows:

C(i,7) = J(i,J)k(i, 1), (12)
where the curvature:(i, j) at each pixel of7 is given by the determinant of the Hessian matHX:, j) [35],

which itself is known to be a good blob detector [59], wh&féi, j) = (V - VI 1)(i,j) andV = g\aaw a%) . The
classification ma again is binarized (Step 3) using the threshigléind possibly the size threshold which are
not directly related to the object appearance.

C. Supervised Signal Enhancement

In order to make our comparison study of spot detection nustmore complete, we also included two machine
learning (ML) techniques. The first one is the AdaBoost algoritf60], which is frequently used for object
detection in computer vision [60]-[62], and was recentlgwgh to perform well also for spot detection in molecular
bioimaging [32]. The second method is Fisher discriminantyaig (FDA), which is a classical and well-known
linear classifier, but which has not been employed for spatdien in fluorescence microscopy up to now. It uses
the same information as AdaBoost but is computationally éegpensive and much easier to understand conceptually.

1) AdaBoost:This ML detection algorithm operates on small patches of ttinege around the hypothesized spot
positions (Fig. 3(a)) and classifies the patches (Fig. 3(b))patiype (object is present) or negative (object is absent)
based on the combined response of several simple feataesttdassifiers. Usually the feature-based systems are
favored over pixel-based ones because they are much fagteram encode some domain knowledge. A selef
simple Haar-like features is used [63], which is overcongla comparison with the real Haar basis [42], and in
our case consists of four kinds (four different rows in Fig. Byr each featurey, | = {1,..., N}, the feature
valueé(n;) is a weighted difference between the sum of the pixels witivim (black and white) rectangular regions.
The weights are chosen in such a way that the value of the &eatumputed for constant-intensity images is zero.
The number of possible features, which are scaled and ttadslersions of the features of each kind (Fig. 3),
depends on the image patch size, and fox 10-pixel image subwindows [32] is 962 (the number of feayer
kind is indicated below each feature row in Fig. 3). Using thiegral images [60], the computation of the sums
of pixels in the rectangular regions can be performed vesy. fa

Having the pool ofN featuresy;, and a training set consisting 8f; image patches labeled as positive avwg
patches labeled as negative, we selected a variant of thBodsa learning algorithm that can be used both to select
a small subset of features and to train the classifier [60]. Ghace was made based on recently published results
of applying the AdaBoost algorithm in bioimaging [32]. The @@bost algorithm is used to boost the performance
of a simple (weak) learning algorithm. The weak classifier sigieed to select the single feature that best separates
the positive and negative samples. In our case, this sépaliataccomplished by finding the appropriate threshold
d; for each featurey; at every round during the training stage. With each run oflgerithm, one feature is selected
and added to the set of best discriminating features. The auwibruns, denoted bW 45, is user-defined. It is
known that the training error of the strong classifier appneaczero exponentially in the number of rounds [61].

The final strong classifier is a weighted linear combination b$elected weak classifiers. The classification map
Cp (Step 3) is constructed as follows. First, for each pixej) of Z the value of the featurs; is computed using
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Fig. 3. Examples of the Haar-like features that were used in the expesne detect spots, and the numbers of all possible scaled and
translated versions in 20L0-pixel subwindows of the image.

the corresponding 1010-pixel image subwindow centered (af;) and assigned t6" (i, j), wherel’ specifies one

of the N4 features that were selected during the training. This wayjrttageC’ is obtained. Then, the values in
C" are thresholded using the feature threshbldproducing a binary versioﬁg of CV. The procedure is repeated
for all Nsp features, and the image‘%, I"=1,...,Nap, are combined (with weights also learned during the
training) into C, which is then thresholded with the threshéld= 0.5 [60], producing the magz. In the final
classification map, some additional thresholding using the mformationv, (not related to the notion of spot
size) might be needed in order to remove small regions witclassified pixels.

By applying the trained classifier to the imade(Step 2), prefiltering (Step 1) is performed implicitly: the
values of the features are the difference in average pixekesain the black and white rectangular regions. This
averaging reduces the variance of the feature value esimat a similar way as in the case of the top-hat filter
(Section 11I-B3).

2) Fisher Discriminant AnalysisDiscriminant analysis is a statistical technique whiclssifies objects into one
of two or more groups based on a set of features that destribeljects [64]. We use FDA to classify the image
patches in the same way as in the AdaBoost method (Sectiddl)ll+or an image patch of size x n pixels,
the n horizontal rows of pixels are concatenated into a 1-D (colufeature vectoy of sizen?. Having a labeled
training dataset with positive and negative samples (ingegehes), the corresponding sets of featt{géls}{\fl and
{yg};g are used to compute the mean and the covariance matriX. for each class: = {0,1}. The task of
FDA is to find the linear transformatiow that maximizes the ratio

(W' (11 — mg))?
In some sense&)(w) is a measure of the SNR for the class labeling, where the ntoneepresents the between-
class variation and the denominator represents the witlaiss variation. It can be shown that the optimal separation
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occurs whenw = (27 + o)1 (; — pg) [64]. This concludes the training stage. During the clasgiicastage,
when FDA is applied to patches extracted from the imagesing a sliding subwindow of size x n pixels, the
patch is classified as positive (object is preseng,(i,j) = 1) if the condition |w’y — | < [wly — gl is
satisfied, and as negative (object is abséhi(i, j) = 0) otherwise.

The FDA classification procedure has an appealing interpoetais linear filtering (similar to (2)) with a kernel
that is learned from the training data. Thé-dimensional vectow can be reshaped into anx n patch, similar to
the image patch from which the feature vecjors formed (see examples in Section 1V-B, Fig. 18). In this case,
the projectionw”'y, which is performed using the sliding subwindow for eachdmaixel, is a convolution as in
(2). The classification mag is obtained by thresholding the convolution result at= %wf(u1 — o), Which is
obtained automatically because the training was perforbeédrehand.

D. Signal Thresholding and Performance Measures

As mentioned before, in order to locate and count the dedegbgects, the classification mapis binarized
using the threshold; (whose meaning depends on the method), and the connectguboents are searched for.
Having the binary imag€p, whereCp(i,5) = 1if C(i,j) > Iy, andCg(i, j) = 0 otherwise, we run the sequential
scan labeling algorithm [65] in order to label the conneatechponents and obtain the set of labélg, j) for
all pixels, whereL(i,j) € {0,...,M}, with L = 0 corresponding to the background ahd# 0 denoting one
of the M detected objects. The center of mass,, is calculated for each of/ objects, taking into account the
pixels (z,7) and the image intensity(i, j) for all (i, ) for which L(i, j) = m. The position is compared to the
“ground truth”x?, (known exactly in the case of synthetic images, and obtamadually by approximation in the
case of real biological images). k%, — x,,|| < A°, the object is counted as a true positive (TP), otherwise the
detected object is a false positive (FP). The number of falsativeg (FN) is defined a8&° — Ntp, where N0 is
the number of objects in the ground truth aNgr is the number of TPs. True negative (TN) is defined as accurate
detection of the spot not to be an object. The number of TNs cateied only for the ML approaches during
the training stage. During the actual detection with anyhef described methods, the number of TNs in the image
data is undefined.

In order to measure the performance of the algorithms, weidentwo common measures: the true-positive
ratio (TPR), TPR =N+p/(N1p + Nen) = Ntp/NY, also called sensitivity, and the false-positive ratio (FPFRIR
=Ngp/(Nep+ Ntn). Because TN is not known for some methods, the modified verdigiPR is used, given by
FPR'=Nep/NV. In this case, the standard receiver operating charaiite(ROC) curve cannot be built, and the
modified version, called the free-response receiver opgyatharacteristic (FROC) curve, is used [66], [67]. To
demonstrate the sensitivity of TPR and PP parameters, for example the threshbldwe measure the values
St = — (0TPR/0lg) and Sp = — (OFPR'/0ly) at l; = [};. The threshold? is hereafter called “optimal” and
corresponds to the value for which the FPR 0.01 (only 1% false positives). The value of TPR for = [} is
denoted as TPR Having S and S, we can compute the valUATPR = 0.01570*, which corresponds to the
changes in TPR (around TPR*) when the parameter valer v;) is changed by 1% around (or v*). Similarly,
AFPR= 0.01Sgl* can be introduced for the FPR.

IV. EXPERIMENTAL RESULTS

The performance of the nine detection methods (seven unsspdrand two supervised methods) described
in the previous section was quantitatively evaluated ugiath synthetic images (Section IV-A) and real image
data (Section IV-B) acquired for different biological stesli In the experiments, we studied the dependence of the
performance (TPR and FPRon parameter settings, type of object (perfectly roundlighy elongated), and
image quality (SNR). Here we describe the experimental seama the results.

A. Evaluation on Synthetic Image Data

1) Simulation SetupThe described detection methods were evaluated using sinbu realistic 2-D images
(of size 512 x 512 pixels, with A, = A, = 50 nm) containing intensity profiles of round and elongated ctisje
modeled using (1) withrmax = omin = 100 nm for round objects, anénax = 250 nm, omin = 100 nm for elongated
objects, for different levels of Poisson noise in the rang&NR = 2—4. Such SNRs are typical for the real image
data acquired in our biological applications and are lowantthe critical level of SNR= 4-5, at which several
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Fig. 4. Examples of synthetic images used in the experiments. The syicah&@aussian intensity profiles are embedded into uniform
(Type A), gradient (Type B), and non-uniform (Type C) backgndst

classical detection methods break down [23], [24]. Here, $N&efined as the difference in intensity between the
object and the background, divided by the standard dewiaifadhe object noise [23].

In order to estimate the performance of the algorithms ethiypes of images were created (see Fig. 4), for each
type of object shape and for each SNR. In every image, 256 Gausgensity profiles were placed at positions
X0 5 = (16 4 307" + Ui_10,10), 16 + 305" + Ui_10,10))", whered’ = 0,...,15, j' = 0,...,15, andlf_, , denotes
the uniform random generator within the interata, a). This way, the objects were randomly placed, with no
overlaps in the intensity distributions. Type A images wewpastructed by adding a background level of 10, similar
to previous studies [23]. To form the final noisy image, a Paissoise generator was applied independently to
every pixel of the noise-free image. In the case of Type B isaghe background level increased linearly in the
horizontal direction (see Fig. 4), from a value of 10 at th¢ iefage border to 50 at the right border. Taking into
account that the variance of Poisson noise is intensity depgnwe corrected the object intensities accordingly
prior to application of the noise generator in order to ke®p $NR constant over the whole image. Finally, type
C images mimic the intensity distribution in the presencéaaje (compared to object size) background structures
(clutter), which are sometimes present in the real imagea dad can be either larger subcellular structures or
acquisition artifacts. In this case, the pixel values wemapled from the normal distributiofy (¢, j) ~ AN (0, 150).
Then, the image was convolved with the Gaussian kefhgl and thresholded at zero-level. The final image
was obtained by adding td,(G1o * Ip) a constant background level of 10 plus the (SNR-adaptedobjensity
profiles, followed by application of Poisson noise. Examplesyafthetic images of all three types are shown in
Fig. 4. In every experiment, the performance of the deted@mhniques for each object type was evaluated by
accumulating the numbers of TP and FN for 16 images (each camga256 ground truth objects) and averaging
the results over the 4096 objects. The distance between thmditruth location and the object position estimated
by the detectorA, which defines if the detected object is a TP or FP, was fixedte= 200 nm (4 pixels).

2) Wavelet Multiscale Product-or the performance evaluation of the wavelet multiscatelpct detector (further
abbreviated as WMP), the parameters of the method (see Séi¢tlh) were fixed to the values described in the
original paper [31]i; = 1, K = 3, kg = 3. The performance measures TPR and FRR the image data with
SNR= 2 are shown in Table I. In order to evaluate the sensitivityhaf inethod to parameter changes, we varied
the number of scale& and the wavelet coefficient threshald in our experiments and studied their influence on
the behavior of TPR and FPRIn the experiments, the grayscale classification Ggpoduced by the method was
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TABLE |
PERFORMANCE OF THEWMP DETECTOR USING THE ORIGINAL ALGORITHM PARAMETERS ATSNR = 2.

Image || Round Objects| Elongated Objectg
Type [[TPR| FPR | TPR FPR

A 0.33| 0.001 | 0.34 0.013

B 0.18 | 0.001 | 0.20 0.010

C 0.21| 0.015 | 0.25 0.017

TABLE Il
OPTIMAL PARAMETERS AND PERFORMANCE OF THRAVMP DETECTOR ATSNR = 2 AND NUMBER OF SCALESK = 3.

Image Round Objects Elongated Objects

Type k; TPR" St Sk k; TPR* St Sk
A 222| 081 | 57| .04| 3.06| .31 | .61 .05
B 256 | 037 | 56| .05| 3.07| .17 | .36 | .05
C 289 | 030 | 62| .09| 3.17| .18 | .39 | .06

TABLE 11l
OPTIMAL PARAMETERS AND PERFORMANCE OF THEMSVST DETECTOR ATSNR = 2 AND NUMBER OF SCALESK = 3,7* =107,

Image Round Objects Elongated Objects

Type S* TPR ST SF k‘; TPR ST SF
A 29| 099 | 0OO| .01 | 29| .99 | .00 .03
B 29| 099 | OO | .02 29| .99 | .00 | .02
C 68| 093 | .03|.01|72| 96 |.02| .01

thresholded at;, and after binarization all the connected components wadveléd as detected objects. Because
the method produced quite fractured clusters of pixels, gexltthe morphological opening operator with a square
3 x 3 mask (a5 x 5 mask yielded very similar results) in order to fill in the holes

The main results of the sensitivity analysis for this methoel shown in Fig. 5. They show that a value of
K = 3 is a good compromise to maximize performance for all thréerdint data types together (Fig. 5(a)-(c)).
The results also show that the performance of this methodsdgojte rapidly when the SNR decreases from 4
to 2 (Fig. 5(d)), and also when the background complexitygases (Fig. 5(e)-(f)). Table 1l shows the “optimal”
values ofk, for different types of data foi; = 1, K = 3, and SNR= 2.

For comparison, we also applied the soft thresholding ofwheelet coefficients according to (6) instead of the
original hard thresholding witlt; = 3. For round objects in Type C images at SNR2, using the hard threshold
ks = 3, we had FPR= 0.015 and TPR= 0.21. The value ofl; was increased to 34 when the soft threshold (6)
was used in order to obtain the same EP&hd the TPR in this case was equal to 0.25. For elongated sitfext
corresponding values were FPR 0.017 and TPR= 0.25 for the hard thresholding, and TPR0.27 for the soft
thresholding.

Another experiment was conducted in order to investigaténéf low performance of the WMP for SNRs
around 2—-3 was dependent on the type of noise (Poisson vemussi@n). The variance-stabilizing Anscombe
transform [54] was applied (see Section IlI-A4). The experitaewith the variance-stabilized (Gaussian) images
showed no significant difference in TPR and FPR for all types of endata compared to the original (Poisson)
synthetic images.

3) Multiscale Variance-Stabilizing Transform DetectdFhe performance of the multiscale variance-stabilizing
transform detector (further abbreviated as MSVST) was studigebnding on the value of the parametewhich
controls the FDR. The number of wavelet planes was fixeft te- 3, which similarly to the experiments with the
WMP was found to maximize the performance for all types ofgmaata. The TPR and FPR* of the method for
different values ofy are shown in Fig. 6. The optimal values gfand the corresponding performance measures
for the image data with the SNR 2 are shown in Table IlI.

4) Top-Hat Filter: To study the performance of the top-hat filter (further abiated as TH), the brim radius,
Ryprim, Which controls the local background estimation aroundsinat position, was fixed to 10 (see Section 11I-B3
for the parameters description). Varying this parametethie range 8-12 did not influence the final results
significantly, indicating that the local background estimats quite robust. The TPR and FPRf the method for
different Ry, values, depending offy, are shown in Fig. 7. Again, holes within clusters (objeatsihie binarized
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Fig. 5. FROC curves for the WMP detector in the case of the round obpetending on the wavelet coefficient threshbld for Type

A (a), Type B (b), and Type C (c) image data and different numbeészalesk’, and the FROC curves for Type C data for different SNRs
(d). The same type of FROC curves in the case of the round (e) andagémh(f) objects for different types of data, with SNR2 and

K =3.

classification mag s were filled using the closing operation withba< 5 mask. All found clusters were considered
as objects, regardless of cluster size. The optimal valuds;pffor all image types with SNR= 2 are shown in
Table IV. The value ofR,, = 3 was chosen, which maximizes the TPR when FER).01 for Type C data with
both round and elongated objects.

5) Spot-Enhancing Filter:;The performance of the spot-enhancing filter (further abbtedi as SEF) using the
synthetic images was studied depending on the values ofghalghreshold, (see Section I1I-B4). The filter acts
as a smoothing and local background subtraction technigjtfeeasame time (Steps 2 and 3). The only parameter
is the scale of the convolution kernel;, which was tuned in order to get the highest TPR at FPR).01 in the
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Fig. 6. FROC curves for the MSVST detector in the case of round (aebnated (b) objects, depending on the values of the threshold
~ the type of image data, at SNR 2 and optimal scaldS = 3.

TABLE IV
OPTIMAL PARAMETERS AND PERFORMANCE OF THETH DETECTOR ATSNR = 2 WITH RADII Rpyim = 10 AND Riop = 3.

Image Round Objects Elongated Objects

Type || Hy, | TPR | S¢ | Sr | Hf, | TPR | Sr | Sk
A 2.74 .99 .00 | .05 | 2.95 .99 .00 | .20
B 585| .88 | .11| .03 |575| .96 | .04 | .02
C 528| .48 | .35| .01 |562| .56 | .38| .01

TABLE V
OPTIMAL PARAMETERS AND PERFORMANCE FOR THESEFDETECTOR ATSNR = 2 AND OPTIMAL SCALES o1, = 2.5 (FOR ROUND
OBJECTY AND o, = 3.1 (FOR ELONGATED OBJECT}.

Image Round Objects Elongated Objects

Type Iy | TPR* | Sr | Sk I | TPR* | Sr | Sk
A 0.85| 99 | .01|.15| 055| .99 | .00 .16
B 1.84 91 351] .08 | 1.21 .99 .07 | .06
C 1.22 .95 .29 | .09 | 0.99 .95 .34 | .07

case of Type C data. In the case of round objectsgfovalues{1.5,2,2.5,3, 3.5}, the corresponding TPR values
were {0.52,0.9,0.95,0.9,0.65}, and thuso;, = 2.5 was used in the experiments. In the case of elongated opjects
for oz, in {2.5,3,3.5,4}, the corresponding TPR values wei@75,0.86,0.92,0.74}, ando, = 3.1 was used. All
clusters in the binary classification map after signal tholhg were counted as objects, and the valijeand
corresponding TPR Sr, and Sf, for which FPR = 0.01, are shown in Fig. 8 and Table V. Again, the valtje
represents the optimal threshold, for which FRR0.01, with corresponding TPR denoted as TPR

6) Grayscale Opening Top-Hat FilterThis detection method from grayscale morphology (furthdsrebiated
as MTH) is a robust local background subtraction technigtsepérformance was not influenced significantly by
changes of the mask sizey, in the rang€g3, 5] (see the parameter description in Section I1I-B5). The inmages
were first smoothed with the Gaussian kernetat 2. The radius of the mask was fixed tq = 5, which means
that all image structures of size smaller than the size ofitble A would be translated to the detection n@plwo
thresholds, one on the intensity amplitude and one on thecblsjze, could be applied for the object extraction
from C. The latter threshold is crucial if the clutter consists ofgibly elongated narrow structures, which would
be considered as objects by this detector (see Section )II\ABB studied the dependence of TPR and FBRly
on the intensity thresholg);, as in the synthetic images there are no clutter structuredlex than the object size.
In this case, either intensity thresholding can be usedouwitisize thresholding, or a low intensity threshold can
be used with further thresholding on the size. The valtjesand corresponding TPR S, and Sg, for which
FPR* = 0.01, are shown in Fig. 9 and Table VI.

7) H-Dome Based DetectionThe method based on thfedome transformation (further referred as HD) was
evaluated depending on the dome heightThe parameters of the method (see Section 11I-B6) were fixed to
o = 2.5, oy =6, s =6, and N = 5000, which maximize the TPR for the Type C image data at FBR).01.
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Fig. 7. FROC curves for the TH detector in the case of the round objegtending on the values df,;, for several values oRiop, for
Type A (a), Type B (b), and Type C (c) image data, and the FROC suimeType C data for several SNRs (d). The same type of FROC
curves in the case of the round (e) and elongated (f) objects depeaoditize values offf;;, for different types of data, with SNR- 2,
Rprim = 10, and Ryp = 3.

TABLE VI
OPTIMAL PARAMETERS AND PERFORMANCE FOR THEMTH DETECTOR ATSNR = 2 AND WITH MASK RADIUS 74 = 5 AND GAUSSIAN
PREFILTERING ATo = 100 nm.

Image Round Objects Elongated Objects

Type Iy | TPR | S | Sk | I | TPR | St | Sk
A 2.1 .99 00| .04 | 21 .99 .00 | .04
B 35 .87 18 | .06 | 4.1 .98 .05 | .02
C 22| 88 |.31|.03]32| 91 | .15]| .02

The results of the experiments are shown in Fig. 10. As destrithe method estimates the object position and
the variance of that estimation using a sampling procedweassing the explicit creation of the mé&d22]. The
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Fig. 8. FROC curves for the SEF detector in the case of round (a) andatkd (b) objects, depending on the values of the threstgld
and the type of image data, at SNR2 and optimal scales; = 2.5 (for round objects) and;, = 3.1 (for elongated objects).
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Fig. 9. FROC curves for the MTH detector in the case of round (a) anwjated (b) objects, depending on the values of intensity threshold
14 for different types of image data, at SNR2, and with mask radius4 = 5 and Gaussian prefiltering at= 100 nm.
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Fig. 10. FROC curves for the HD detector in the case of round (a) amjaled (b) objects, depending on the values of the dome height
h for different types of image data, at SNR2, and with parameters;, = 2.5, oy = 6, s = 6, and N = 5000.

valuesh* and corresponding TPRSy, and Sy, for which FPR = 0.01, are shown in Fig. 10 and Table VII.

8) Image Features Based Detectioithis scheme (further abbreviated as IFD) creates the clas®ificenap
C during Step 2 by combining the image intensities with localvature information (see Section IlI-B7). Two
types of the mag@ were considered in the experiments (with the resulting oushabbreviated as IFDand IFD;
respectively). In the first casé,is given by the determinant of the Hessian matdet; H, calculated at each pixel,
with smoothing scaler [35]. The second type of classification méps obtained by pixel-wise multiplication of
the valuesdet H(i, j) with the intensity values/(i, j) (2). In the experiments, we used= 2, and the results are
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TABLE VI
OPTIMAL PARAMETERS AND PERFORMANCE FOR THEHD DETECTOR ATSNR = 2 FOR PARAMETERSo 7, = 2.5, oar = 6, s = 6, AND
N = 5000.
Image Round Objects Elongated Objects
Type h* TPR ST SF h* TPR ST SF
A 1.6 .99 A1) 05| 14 .99 .01 | .09
B 1.6 97 22| 05| 14 .99 .01 | .09
C 1.6 .90 211 .05 1.2 97 .16 | .05
B I r I _ I _ | ] | ] 10 [ I ] I I I I I |
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Fig. 11. FROC curves for the IRDdetector in the case of the round (a) and elongated (b) objects, degenmdthe values of the threshold
l4 and the type of image data, at SNR2, and for smoothing scale = 2. The same curves for IFDn the case of round (c) and elongated
(d) objects.

TABLE VI
OPTIMAL PARAMETERS AND PERFORMANCE FOR THEFD DETECTORS ATSNR = 2 AND FOR SMOOTHING SCALEc = 2.

Image Round Objects Elongated Objects
Type I [TPR ] Sr [ Sk I; [TPR[ Sr [ Sr
IFD;
A 12 98 | 0.67| .68 | .21 .53 | 5.17 | .42
B .58 .67 | 1.23| .12 71 31 | 1.02 | .06
C .18 89 | 251 | .16 .28 31 | 3.21| .26
IFD2
A 133 | 99 | 03 | .03 | 3.06 | .59 | .32 | .03
B 33.34 | .46 .01 | .00 | 43.36| .23 .01 | .00
C 195 | .71 | 36| .03| 633 | .19 | .08 | .01

shown in Fig. 11 and Table VIII.

9) AdaBoost:In order to test the performance of the ML approaches, stasiith AdaBoost (abbreviated as
AB) for the detection of round objects, we constructed a @62 Haar-like features (see Section IlI-C1) using
a 10x10 pixel subwindow, which was previously reported as optifoa similar applications [32]. Experiments
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TABLE IX
SENSITIVITY AND SPECIFICITY OF ADABOOST CLASSIFICATION

Image Type A| Image Type B Image Type C
SNR || TPR [ Spec.| TPR [ Spec.| TPR |  Spec.
Trained using type A data (SNR 2)

2 0.994 | 0.995| 0.999 | 0.930 | 0.965 0.987
3 1.0 | 0996 | 1.0 | 0.922| 1.0 0.989
4 1.0 | 0995| 1.0 | 0.919| 1.0 0.992
Trained using type B data (SNR 2)
2 0.914| 1.0 | 0.991| 0.977 | 0.690 1.0
3 1.0 | 0999 | 1.0 | 0.977| 0.998 0.999
4 1.0 | 0999| 1.0 | 0.977| 1.0 0.999
Trained using type C data (SNR 2)
2 0.996 | 0.992 | 0.999 | 0.902 | 0.999 0.979
3 1.0 | 0990 1.0 | 0.910| 1.0 0.982
4 1.0 | 0991 1.0 | 0901| 1.0 0.982
Trained using type A, B, C data combined (SNR2)
2 0.988 | 0.998 | 0.998 | 0.942 | 0.962 0.994
3 1.0 | 0997| 1.0 | 0.939| 1.0 0.995
0.998| 1.0 | 0.940| 1.0 0.993

4 1.0

Lo

Fig. 12. Example of the top-five features that were selected by AdaBodise case of the Type A training data.

with other subwindow sizes in the range of 8-12 pixels showedsignificant difference in performance. For the
detection of elongated objects, the subwindow size was figetl3k 13 pixels, which consequently gives 2366
features. Even though the characteristic size of the eledgabjects is doubled (compared to the round objects),
the use of larger subwindow sizes, for example<21 pixels, degraded the AdaBoost performance. With the high
spot density, the larger subwindows included the neiglmigoobjects (equally frequently in the positive and negative
training sets) and caused the problem with defining a cleasidecboundary for these ML approach.

For the training stage, separate sets of synthetic images wreated, and 4096 positive and 4096 negative
samples (1@10 pixels) were extracted from each image type (A, B and C}ainimg round objects. The same
training procedure was repeated for elongated objects: fypes of training were performed: using the samples
from each image type separately, and using the combinedirtigadataset, where 4095 samples were selected (in
total) from type A, B and C images in equal proportions. Théning was based on SNR 2 (the worst case
considered in this paper). Training using higher-SNR imagsslted in worse performance on lower-SNR images,
as the number of features selected by AdaBoost became tdb &aeh trained classifier was applied separately
to the synthetically created test images of all three typath, SNR in the range 2—4, and the classification results
(sensitivity (TPR) and specificity) for 4096 positive and 40¥gative patches, extracted from these test images,
are given in Table IX. In the experiments, the number of Ada®@auns,N 4z, which corresponds to the number
of features selected and used by the classifier, was fixed to 5Stopkiéve features selected during the training are
shown in Fig. 12.

The behavior of the sensitivity and specificity was also irngestd depending on the number of Haar-like
features,N 4, that are used for the classification. For this analysis, ¢oetbtraining (using the data of type A,
B, and C) was performed, and the classifier was separatelyedpiol the test data of each type. The results for
different values ofV, g are shown in Table X, where the last three rows also show tHerpgance of the classifier
trained using a reduced training set of 1002 combined sa{3&4 of each type).

In all these performance evaluation experiments, the iflessvas applied to image patches extracted from the
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TABLE X
SENSITIVITY AND SPECIFICITY OFADABOOST CLASSIFICATION DEPENDING ON THE NUMBER OF RUNS

Image Type A| Image Type B| Image Type C
SNR || TPR | Spec.| TPR [ Spec.| TPR [ Spec.
Nap =5
2 0.988 | 0.998 | 0.998 | 0.942 | 0.962 | 0.994
3 1.0 0.997| 1.0 0.939| 1.0 0.995
4 1.0 | 0998 1.0 | 0.940| 1.0 | 0.993
Nap =10
2 0.991| 0.998 | 0.999 | 0.946 | 0.965 | 0.994
3 1.0 | 0.998| 1.0 | 0.944| 1.0 | 0.996
4 1.0 0.998| 1.0 0.944| 1.0 | 0.993
Nap =20
2 0.991| 0.999 | 0.999 | 0.953| 0.965 | 0.994
3 1.0 | 0.998| 1.0 | 0.957| 1.0 | 0.996
4 1.0 0.998| 1.0 0.954| 1.0 0.996
Nap =5 and 1002 training samples
2 0.991| 0.999 | 0.999 | 0.953 | 0.965 | 0.994
3 1.0 0.998| 1.0 0.957| 1.0 0.996
4 1.0 0.998| 1.0 0.954| 1.0 | 0.996
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Fig. 13. FROC curves for the AdaBoost detector in the case of the r@)rehd elongated (b) objects, depending on the value of the size
thresholdvg, at SNR= 2, and with N4 = 50.

positive and negative test images. In order to evaluate #réoqmance of actuatletectionusing this machine
learning approach, we applied the classifier to each pixehénimnages (based on a window of sizexIl@-pixels
around the pixel). The resulting classification map is a newgenaf the same size as the original, with each pixel
being either “1” (if the corresponding image pixel was cifisd as belonging to an object) or “0” (if the pixel
was classified as background). Before labeling the connemethonents and extracting the number of detected
objects and their positions, the map was median-filtered avitbund mask of radius 2 pixels in order to suppress
too small clusters, and then a closing operation was applitd the 3x3 structuring element to fill small holes.
The FROC curves for this detection procedure depending onitleetlsresholdv, of the clusters in the binary
classification map’s in the case of round and elongated objects are shown in FigTH8behavior of TPR and
FPR' depending on the number of featuréé, s, used in the detection is shown in Table XI. The parameters of
the detection were optimized in order to get FPR 0.01 when N4 p = 50. After that, the number of features
N,p was reduced (see Table XlI) and the behavior of the performmameasures studied. The optimal parameter
values for the size thresholg, are shown in Table XII.

10) Fisher Discriminant AnalysisThe classifier in this case (abbreviated as FDA) was trainedyubkim same
training data as in the case of AdaBoost. Using the labéled 10 image patches (for the round objects) and
13 x 13 patches (for the elongated objects), the kerrel®r both types of objects were obtained (see Fig. 18(d,e)).
Then, the sliding subwindow was used in order to classifyyepel in the imageZ. The method produces the
binary classification magg directly, so the performance of the detector was studiecnigipg on the threshold
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TABLE XI
DETECTION PERFORMANCE OFADABOOST DEPENDING ON THE NUMBER OF SELECTED FEATURE®N 4, WITH TRAINING BASED ON
THE COMBINED IMAGE DATA (TYPE A, B, AND C) AT SNR= 2.

Image Type A| Image Type B| Image Type C

Nap || TPR | FPR | TPR | FPR | TPR | FPR
5 0.995| 0.013 | 0.912 | 0.037 | 0.806 | 0.019
10 0.996 | 0.014 | 0.929 | 0.041| 0.818 | 0.022
20 0.994 | 0.013| 0.921| 0.022| 0.789 | 0.019
50 0.994 | 0.011| 0.926 | 0.016 | 0.810 | 0.018

TABLE X
OPTIMAL SIZE THRESHOLDING PARAMETERS AND CORRESPONDING PERORMANCE FORADABOOST ATSNR = 2.
Image Round Objects Elongated Objects
Type || v; [TPR*| Sr Sr | vy |[TPR| Sr Sr
A 39 [103[10%] 2] 99]10°[ .10
B 31| 94| .01 |10®| 18| 99 | 1075 | 1073
C 30| 94| .01 |10®| 12| 99 | 1075 | 1073
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Fig. 14. FROC curves for the FDA detector in the case of the round @)elomgated (b) objects, depending on the values of the size
thresholdvg and the type of image data, at SNR2.

TABLE Xl
OPTIMAL SIZE THRESHOLDING PARAMETERS AND CORRESPONDING PERORMANCE FOR THEFDA DETECTOR ATSNR = 2.

Image Round Objects Elongated Objects

Type vy | TPR St Sk vy TPR* St Sk
A 46 99 [107°[.01] 30 99 [ 107 | 1072
B 88| .99 | 107 | .01| 56 | .99 | 107 | 1072
C 98| .96 | 1072 | .01 | 124 | .99 | 107° | 107?

vg (Which defines the size of the clusters of connected pixelSgj) and not the signal threshold. The results
are shown in Fig. 14 and the optimal parameter values are miegb@n Table XlIl. The size threshold, which in
principle is an integer number (the minimum number of pixlsluster inCp should have to be considered an
object), is real-valued in Table XIlI, due to the interpaatin order to obtain the value; for which FPR = 0.01.

11) Comparison of All DetectorsThe performance of all the described detectors was compadréte devel
of FPR = 0.01 for the different image data at SNR 2. The results are shown in Fig. 15. From the sensitivity
analyses (see Tables II-VIII, XII, XIll), which was based tme comparison ofATPR andAFPR around the
optimal signal thresholds for different detectors and dgpes, revealed that FDA and AB are superior to all other
detectors and show the highest TPR* and the lowest sensifivitgll image data (Type A, B, and C, SNR 2).
WMP showed the worst performance and additionally showgt kensitivity to parameter changes, together with
the TH detector, which showed high performance only for Typamdl B data. The IFDs are quite sensitive to
parameter changes and do not have sufficiently high TPR in treafahe elongated objects. MSVST, HD, SEF,
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Fig. 15. Maximum detection probabilities (TPRat the level FPR = 0.01 for all the detectors applied to all three types of synthetic
image data at SNR- 2 in the case of the round (top) and elongated (bottom) objects.

and MTH demonstrate high TPR* and low parameter sensitivity,nmne of these four detectors is better than
the other three foall types of data. Finally we observed that the difference inqgarnce between the methods
decreases when the SNR of the image data increases, and wethatrior SNR> 5 all methods perform equally
well (TPR=1).

To further investigate the influence of object appearancénerperformance of the described detectors, addition-
ally a set of sixteerb12 x 512 synthetic images was created with the nonuniform backgtafnType C images
and containing 4096 objects of different sizes, specifieddwn( omax) (S€€ Fig. 16(a), (b)). The size parameters
(omin, omax) Were independently sampled from the uniform distributiorthe range of75 — 250 nm, where the
smallest value approximately corresponded to the smadi&si-like objects in the real images. All the detectors
were applied to this type of images for different SNR levels] éor SNR= 2 the results are shown in Fig. 16(d).
Additionally, all the detectors were applied to the imagesfiftered with the patch-based denoising framework
described in Section IlI-A3 (see Fig. 16(c)) and the TPR* at tlrellef FPR*=0.01 is also presented in Fig. 16(d).
In the case of the TH and MTH detectors, the Gaussian smootBitgp (1) was substituted with the patch-based
denoising, improving the detection performance. The AB and k2re trained using the combined training data
sets described in Section IV-A9. For the ML approaches, théopeance was slightly higher (not shown in the
plot) when the methods were trained using only the trainiag@es from the same type of data (the synthetic
images containing objects of different sizes). These resanfirm that AB and FDA perform best overall, closely
followed by MSVST, HD, SEF, and MTH.

B. Evaluation on Real Image Data

1) Image Data: The described detection methods were also tested on realdjpee fluorescence microscopy
image data from several biological studies. The main goahe$e studies was to estimate important kinematic
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Fig. 16. Example of synthetic images containing objects of different siz&N\R = 7 (a) and SNR = 2 (b). Example (c) of applying the
patch-based denoising scheme to the images with SNR 8 2,3( mask, 6 iterations, for the parameter description see [52]). Maximum
detection probabilities (TPR at the level FPR = 0.01 for all the detectors applied to the image data at SNR in the case of the round,
elongated, mixed objects (d).
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Fig. 17. Examples of real fluorescence microscopy images (a,cdogcacompare Fig. 1) with manual spot annotation (white squares) by
an expert biologist serving as ground truth. The corresponding FR@Ce, and f) of all the detection methods (with dependence on the
same free parameters as in the experiments on the synthetic image @athjoan below the images (a, b, and c). In these plots, IFD
represents the IFDdetector, which in the experiments on synthetic image data performed sithiéar to or better than the IFDdetector
(see Fig. 15).

parameters of subcellular particles in eukaryotic cellsumderstand the molecular mechanisms underlying particle
motility and distribution, it is essential to characteriredetail different dynamic properties, such as velocjties
run lengths, and frequencies of pausing and switching absiletal tracks. This requires accurate tracking of
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Fig. 18. The FDA kernels for the MT data (a and b), vesicles (c), anddhed and elongated objects from the synthetic data (d and e),
together with the kernels for mixed size synthetic image data without and witpatth-based prefiltering (f and g).

individual particles, for which a wide variety of automatracking algorithms can be found in the recent literature
[14], [20], [21], [28], [30], [68]-[73]. In turn, these algibhms generally depend heavily on the performance of the
spot detection stage, which forms an integral part of angkirg algorithm (see Section ).

Two types of representative image data sets were selectethdge experiments. The first showed moving
microtubule (MT) plus-ends, which have a round or elongateplearance. MTs are hollow tubes (diameter of
25 nm) assembled from/S—tubulin heterodimers, which frequently switch betweenwgtoand shrinkage [74],
[75]. The MT network is highly regulated and is essential tmyneellular processes. In the experiments, growing
ends of MTs were tagged with so-called plus-end-trackingeime (+TIP), resulting in typical fluorescent “comet-
like” dashes in the image sequences. In our study, COS-1 welie cultured and transfected with GFP-tagged
proteins [75]. A Zeiss LSM-510 confocal laser scanning miocopscwas used to acquire images of GFP-TIP
movements at a rate of 1 frame per 1 or 2 seconds. The imagernsegueonsisted of 30-50 framesiif2 x 512
pixels of size75 x 75 nn? (see Fig. 17(a,b)).

The second type of image data showed a variety of GFP-labeléclase$Rab6 and peroxisomes), which have
a round shape in the images. In this case, HelLa cells and PEX3-@&dhfwere used [76]. The HelLa cell line
is the oldest cell line and is widely used for many differetudées. Many variants of the HelLa cell line exist,
including HelLa-R, with a so-called “round” phenotype, and_B., with a “long” phenotype. HelLa-L cells were
used to study the dynamic properties of vesicles, and HeLaHR t© study microtubule dynamics, microtubule and
cell cortex crosstalk, and exocytosis [76]. Images weraumed on a Zeiss Axiovert 200M inverted microscope
at a rate of 0.83 frames per second. The image sequencestedrislO0 frames of 344 x 1024 pixels of size
64 x 64 nn? (see Fig. 17(c)).

2) Experiments and Result§or the experiments on real image data, the parameters bfdsdection method
(except the thresholdg andv,) were fixed to the same values as in the case of the experimersgnthetic data.
Since the ground truth was not available for the real datareélsalts of the detection were analyzed by expert
visual inspection and in comparison with manual analysisguMTrackJ [77].

The FROC plots for all the detection methods applied to twcstittive image data sets showing MTs (each
image containingz 80—100 spots at SNR 2—4) and one data set showing vesicles (contairirZp0 spots at SNR
~ 3-8) are shown in Fig. 17. For the latter data set, all detectiethods performed reasonably well, including the
WMP detector, which performed notably worse on the MT dataall cases, the two ML detectors (FDA and AB)
and two unsupervised detector (MSVST and HD) showed the besalbyperformance. For visual comparison, the
kernels obtained by FDA for the three mentioned real imaga dats, as well as for the two types of synthetic
data sets are shown in Fig. 18, where, for example, Fig 18(drtdetne fact that the vesicle appearance in our
images (see Fig. 17(c)) is more diverse compared to the ralmtg data (Fig. 17(a, b)).

As an example, the results of all methods applied to an MT slettavith SNR~ 2 are shown in Fig. 19. Manual
annotation was extremely laborious and tedious in this:cdaseal comparison of several neighboring time-frames
in the image sequence was necessary in order to establistt gogsence. Based on visual inspection of the results,
it was found that the HD detector yielded the largest numibdiRs and the smallest number of FPs. Here, in order
to test the robustness of the ML approaches, the trainingdeas using positive and negative samples obtained
from another dataset (see Fig. 1(b)) with SNR2-3. The results of this experiment imply that FDA is more
sensitive to the training data: if the training is done udimgge data with different imaging conditions (SNR), the
performance of the classifier can degrade. The AdaBoost #iggrion the other hand, is less sensitive.

V. DIscussiON ANDCONCLUSIONS

In this paper we have evaluated the performance of severpanssed and two supervised detection methods
that are frequently used in practice for the detection oflkspots in fluorescence microscopy images. It was
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Fig. 19. Results of applying all the described detection methods to reaedlcence microscopy image data showing GFP-TIP-labeled
MTs at SNR= 2. The HD detector yielded the largest number of TPs and the smallediemuwh FPs. Similar to Fig. 17, IFD represents
the IFD, detector, which performed either similar to or better than the;lEBtector.

shown that all of the described methods follow a “three-stgnal processing procedure, but implement each
of these steps in a specific way. In order to build an accuratierabust detector for a particular application, a

careful selection of the algorithms for each of the stepseisessary. The results from experiments on synthetic
images as well as real image data from two biological stutlid&cated that no detector outperforms all others

in all considered situations. Overall, the supervised nirax learning) methods performed better on the synthetic
images as well as on the real image data, but the differemcégeiperformance were not large compared to some
of the unsupervised methods.

In order to study the influence of small changes in the paransetéings of the detection methods, a sensitivity
analysis was carried out by computing the resulting ratehainge in TPR (the true-positive ratio) and FPR (the
false-positive ratio) around the empirically determingatimal signal threshold, for two types of objects (round
and elongated). From the experiments on the synthetic imagesry low SNR & 2), we found that the AB
(AdaBoost) and the FDA (Fisher discriminant analysis) detscare superior to all other detectors, in that they
show the highest TPR (at very low FPR) and the lowest sensitigitgarameter changes, for all types of image
data considered: uniform background (Type A), backgrouadlignt (Type B), and cluttered background structures
(Type C). Of all the unsupervised detectors, the WMP (wdvelaltiscale product) detector showed the worst
overall performance and, additionally, high sensitivity garameter changes. Similarly, the TH (top-hat based)
detector showed high performance only for Type A and Type B.dBhe MSVST (multiscale variance-stabilizing
transform), HD {-dome), MTH (morphological top-hat), and SEF (spot-enhanéiltey) based detectors showed
high TPR and low parameter sensitivity, but none of them wateb#étan the other two for all data types. Both
variants of IFD (the image-feature based detector) were qaihsitive to parameter changes and did not show high
TPR in the detection of elongated objects. Finally, we also misefrom these experiments that for SNR3, the
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difference in performance of all the detectors rapidly dases.

Additional experiments with synthetic data containingemlt$ of different sizes (starting from the smallest, PSF-
shaped ones) and different shapes (round and elongateteisame image for several SNR levels confirmed
the above results. For some methods, an increase in TPR wawaisehich can be explained by the fact that
the average size of the objects in the images was larger gechpa the images containing only round or only
elongated objects. Our evaluation study also showed tlwdeprnoise reduction techniques, such as patch-based
prefiltering, can improve the detector performance. Thiseguituitive result is due to the fact that nonlinear patch-
based denoising increases the SNR much better than lineanlatan based filters (Gaussian or LoG). However,
applying denoising schemes without taking into accountirtiege characteristics and object appearance, may also
cause a degradation of detection performance, as was see¢hefdMSVST, MTH, and HD detectors. Initially,
these methods use linear prefiltering tuned to the appeardrnite objects. Patch-based denoising is a nonlinear
discontinuity preserving technique, where objects, togetvith other possible noisy structures of any shape, are
equally considered as “discontinuities” and thereforespreed or even enhanced. One should also keep in mind that
increasing the SNR with advanced denoising techniques duzievenn that all objects will be preserved. Depending
on the realization of the noise process in the image, edpetia very low SNRs, the object appearance can be
corrupted by noise to the extent that denoising approaclmesgdwonly worsen the situation, by smearing objects
into the background. This confirms once again that all thregsss@ould be carefully designed depending on the
application.

From the experiments on real fluorescence microscopy image ilatas confirmed that the actual performance
of the detection methods depends on the application. Famtbetubule data, which contained round or elongated
objects of almost identical sizes, we arrived at the samelasions as in the case of the synthetic image data.
For the vesicle data, however, the ranking of the detectas found to be slightly different. These images have
a higher SNR & 3-8) but contain spots of varying sizes. In this case, theatien methods that have parameters
that explicitly relate to spot size, such as the TH and MTH detsc showed quite poor performance. Once their
parameters are set, these detectors expect spots to beilaf siize. Similarly, the image-feature based IFD detector
works well only when all the spots have very similar appeegain terms of the features considered. On the other
hand, detectors such as MSVST, SEF, and HD do not model the spatfyexand because of that allow some
more variation in the appearance of spots. Moreover, the Vdgtector, which also does not assume any specific
object shape, demonstrated much better performance fordatasets.

Based on our extensive experiments, we conclude that wheteatdr with overall good performance is needed,
the supervised AB or FDA detectors or the unsupervised MSVST rdetectors are to be preferred. The main
disadvantage of the supervised methods is that they reguisgning stage, which involves the extraction of positive
and negative samples beforehand. As was shown, the trashiogld not be done using only clearly visible spots
in image regions with high local SNRs. On the contrary, in ordeachieve good classification performance, it
must also include a lot of hardly visible objects. Such mararalotation is extremely tedious, time consuming,
and observer dependent. Spots may be more or less identitah wine data set, but may differ in appearance
from one data set to another, due to the different experiahamd imaging conditions. Because of that, one would
have to repeat the training (or correct it) when new data @etge. The preparation of training samples requires
manual annotation of thousands of objects in order to aehgafficient discriminating power, which itself is a
manual detection that biologists would be happy to use,owitttonsidering further automated analysis. Taking
this into account, the unsupervised MSVST or HD detectors arehneasier to use in practice. When the SNR is
sufficiently high ¢ 5 as a rule of thumb), the other unsupervised detectors noeficsst as well, and require only
minimal adjustment of their parameters to the specific appba.

All the detection algorithms were implemented in the Javagmmming language (Sun Microsystems Inc.,
Santa Clara, CA) as plugins for ImageJ (National Institutebl@alth, Bethesda, MD [78]), a public domain and
platform independent image processing program used ahtipda biomedical image analysis [79] and executed
on a regular PC (a Core 2 Duo with 2.66 GHz CPU and 3 GB of RAM) u#lirgJava Virtual Machine version
1.6. The execution time for the WMP, TH, SEF, MTH, IEDFD, and FDA is approximately the same and for
one512 x 512 image containing 256 objects is 0.2-0.4 sec. The correspgriiine for the MSVST, HD and AB
is approximately 1-1.2 sec. The patch-based prefiltering ef such image takes approximately 60-80 sec. The
learning step using 81923 x 13 positive and negative image patches for the FDA takes appairly 3 sec. and
one run of the AB (selection of one top feature) takes appnaiely 300 sec. We expect that faster execution times
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are still possible, after further optimization of the cottethe near future the algorithms will be integrated into a
user-friendly software tool which will be made publicallyadable.

Finally, in our evaluation study we have not considered neghthat additionally use temporal information
and that were designed specifically for object detection [ @ 3-D time-lapse images [52]. Such methods are
becoming more popular and can potentially outperform gesphtial detectors, by exploiting information from
neighboring image frames in the sequence. These methodspplieahle only to image sequences and can be
categorized as in-between the considered spatial deseotorthe one hand and fully integrated detection and
tracking solutions [20], [30], [70] on the other. While uskfor tracking, they are not necessarily the best option
in biological applications where object detection is regdiin single images, or in image sequence where the
successive frames are too separated in time. The presenftwal study of frequently used spatial detectors is
valuable for many practical applications and offers a basdbr assessing the relative performance of future spot
detectors.
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