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Abstract

Quantitative analysis of biological image data generally involves the detection of many subresolution spots.
Especially in live cell imaging, for which fluorescence microscopy is often used, the signal-to-noise ratio (SNR) can
be extremely low, making automated spot detection a very challenging task. In the past, many methods have been
proposed to perform this task, but a thorough quantitative evaluation and comparison of these methods is lacking
in the literature. In this paper, we evaluate the performance of the most frequently used detection methods for
this purpose. These include seven unsupervised and two supervised methods. We perform experiments on synthetic
images of three different types, for which the ground truth was available, as well as on real image data sets
acquired for two different biological studies, for which weobtained expert manual annotations to compare with.
The results from both types of experiments suggest that for very low SNRs (≈2), the supervised (machine learning)
methods perform best overall. Of the unsupervised methods,the detectors based on the so-calledh-dome transform
from mathematical morphology or the multiscale variance-stabilizing transform perform comparably, and have the
advantage that they do not require a cumbersome learning stage. At high SNRs (>5), the difference in performance
of all considered detectors becomes negligible.

Index Terms

Fluorescence microscopy, image filtering, machine learning, noise reduction, object detection.

I. I NTRODUCTION

THE very first stage in the analysis of biological image data generally deals with the detection of objects of
interest. In fluorescence microscopy, which is one of the mostbasic tools used in biology for the visualization

of subcellular components and their dynamics [1]–[6], the objects are labeled with fluorescent proteins and appear in
the images as bright spots, each occupying only a few pixels (see Fig. 1 for sample images). Digital image analysis
provides numerical data to quantify and substantiate biological processes observed by fluorescence microscopy [7]–
[11]. Such automated analysis is especially valuable for high-throughput imaging in proteomics, functional genomics
and drug screening [12], [13]. Nevertheless, obtaining accurate and complete measurements from the image data
is still a great challenge [14]. In many cases, the quality ofthe image data is rather low, due to limitations in the
image acquisition process. This is especially true in live cell imaging, where illumination intensities are reduced
to a minimum to prevent photobleaching and photodamage, resulting in a very low signal-to-noise ratio (SNR)
[15]–[17]. In addition, despite recent advances in improving optical microscopy [18], [19], the resolution of even
the best microscopes available today is still rather coarse(on the order of 100 nm) compared to the size of
subcellular structures (typically only several nanometers in diameter), resulting in diffraction-limited appearance.
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As a consequence, it is often difficult, even for expert biologists, to distinguish objects from irrelevant background
structures or noise.

In practice, automated object detection methods applied tofluorescence microscopy images either report too many
false positives, thus corrupting the analysis with the presence of nonexistent objects, or they detect less objects
than are in fact present, causing subsequent analyses to be biased towards more clearly distinguishable objects.
This is also a serious issue in time-lapse imaging, where the objects of interest are to be tracked over time to study
their dynamics. In common tracking algorithms, which consist of separate detection (spatial) and linking (temporal)
stages [16], [17], the performance of the detector is crucial: poor detection likely causes the linking procedure to
yield nonsensical tracks, where correctly detected objects in one frame are connected with false detections in the
next (and vice versa), or where tracks are terminated prematurely because no corresponding objects were detected
in the next frame(s). Modern tracking approaches, based on Bayesian estimation [20], [21], avoid the hard decision
thresholds in the detection stage of conventional approaches, and describe object existence in terms of probability
distribution functions (pdf). Such real-valued pdfs reflect the degree of believe in the presence of an object at any
position in the image in a more “continuous” fashion, in contrast with the binary representation (either “present”
or “not present”) obtained after applying hard thresholds.Nevertheless, even in probabilistic tracking frameworks,
some form of “deterministic” object detection is still necessary in the track initiation and termination procedures
[20]–[22], again illustrating the relevance of having a good spot detector. Several detectors have been proposed in
the literature, and the classic, relatively simpler methods have been compared previously for tracking [23], [24],
but a thorough quantitative comparison including recent, more complex methods is missing.

In this study, we compare several detectors that are frequently used for object detection in fluorescence microscopy
imaging, and quantify their performance using both synthetic images and real image data from different biological
studies. The sensitivity of the methods is studied as a function of their parameters and image quality (expressed in
terms of SNR). The methods under consideration range from relatively simple local background subtraction [11],
to linear or morphological image filtering [21], [22], [25]–[28], to wavelet-based multiscale detectors [29]–[31],
and machine learning methods [32]. They can be divided into two groups: unsupervised and supervised. The first
consists of algorithms that (implicitly or explicitly) assume some object appearance model and contain parameters
that need to be adjusted either manually or semi-automatically in order to get the best performance for a specific
application. Supervised methods, on the other hand, “learn”the object appearance from annotated training data—
usually a large number of small image patches containing only the object intensity profiles (positive samples) or
irrelevant background structures (negative samples).

This paper is organized as follows. First, in Section II, we provide background information on the image formation
process in fluorescence microscopy and describe the object detection framework in general. This helps to put the
different detection methods in proper perspective and provides motivations for some of the choices made later on in
the paper. The detection methods that were considered in thisstudy and that implement the general framework are
described in Section III. Next, in Section IV, we present the experimental results of applying the detection methods
to synthetic images, for which ground truth was available, as well as to real fluorescence microscopy image data
from several biological studies. A concluding discussion of the main findings and their implications is given in
Section V.

II. D ETECTION FRAMEWORK FORFLUORESCENCEM ICROSCOPY

A. Image formation

In fluorescence microscopy, specimens are labeled with fluorophores. The distribution of fluorescence caused
by exciting illumination is then observed and captured by a photosensitive detector (usually a CCD camera or a
photomultiplier tube) that measures the intensity of the emitted light and creates a digital image of the sample. The
objects of interest in our application appear in images as blurred spots, which are relatively small and compact, have
no clear borders (which is why we prefer to speak of “detection” rather than “segmentation” in this paper), and their
intensity is higher than the background. The blurring is caused by the diffraction phenomenon and imperfections of
the optical system, which for commonly used confocal microscopes limits the resolution to about 200 nm laterally
and 800 nm axially [11], [16], [27], [33]. This is characterized by the point spread function (PSF) of the system,
which is the image of a point source of light. In our applications, the theoretical PSF, which can be expressed
by the scalar Debye diffraction integral [33], can in practice be very accurately approximated by a 2-D or 3-D
Gaussian PSF [27], depending on the dimensionality of the image data.
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(a) (b)

(c) (d)

Fig. 1. Sample images of microtubules (a, b, d) and peroxisomes (c) labeled with green fluorescent protein (GFP) and imaged using confocal
microscopy. The images are single frames from 2-D time-lapse studies,acquired under different experimental conditions. The quality of the
images ranges from SNR≈ 4–6 (a, c) to≈ 2–4 (b, d).

Apart from the diffraction-limited spatial resolution, another major source of aberrations introduced in the imaging
process is intrinsic photon noise, which results from the random nature of photon emission. Photon noise (Poisson
noise), which is independent of the detector electronics (adding Gaussian noise), can be reduced (and, consequently,
the SNR increased) only by increasing the light intensity or the exposure time. However, increasing the light
intensity in order to improve the image quality causes the fluorescent signal to fade permanently due to photon-
induced chemical damage and covalent modification, a processcalled photobleaching [11]. While this effect can be
exploited to study specific dynamical properties of particledistributions [3], [34], it hampers detection and tracking
of individual fluorescent particles. With a laser as excitation source, photobleaching is observed on the time scale
of microseconds to seconds, and should be taken care of especially in time-lapse microscopy.
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Fig. 2. Object detection framework. The original noisy image (a) is preprocessed with some noise reduction method, and the resulting
image (b) is transformed (enhanced) into a new image (c), in which the possible object locations have higher signal magnitude than all other
structures (d), or all the suspicious locations are marked (e). The threshold (represented by the dark-gray planes in (d) and (e)) is applied
and the connected components in the binarized image (white clusters on the black background) are counted as the detected objects.

In this study, we deal with subresolution objects (blurred spots) on a possibly nonuniform background, the
appearance of which can be modeled using a Gaussian approximation of the PSF. Since the majority of live-cell
imaging and high-throughput studies are based on 2-D image data (or very few optical slices), we limit the method
descriptions and experiments to 2-D. Nevertheless, all detection methods considered in this paper can be extended
straightforwardly to 3-D without any substantial changes.Each imageI consist ofNx × Ny pixels, where each
pixel corresponds to a rectangular area of dimension∆x ×∆y nm2 and the measured intensity at position(i, j) is
denoted asI(i, j). In other wordsI = {I(i, j) : i = 1, . . . , Nx, j = 1, . . . , Ny}. In order to model different types of
subcellular particles (round or elongated appearance), weuse an asymmetric 2-D Gaussian function. In this case,
the measured intensity at(i, j) caused by the fluorescent light source located at(x, y), which is the real-valued
position within the image, is given by

I(i, j) = B(i, j) + exp

(

−
1

2
mTRTΣ−1Rm

)

, (1)

whereΣ = diag[σ2
max, σ

2
min], R = R(φ) is a rotation matrix

R(φ) =

(

cos φ sinφ
− sinφ cos φ

)

, m =

(

i∆x − x
j∆y − y

)

,

and−π < φ ≤ π defines the rotation,B(i, j) is the background intensity distribution, and the parameters σmax

andσmin represent the blurring induced by the PSF and, at the same time,model the elongation of the object. For
symmetrical subresolution structures such as vesicles,σmin = σmax ≈ 80–100 nm, and for the elongated objects,
such as microtubules,σmin ≈ 80–100 nm andσmax ≈ 250–300 nm [20], [27]. Concerning the density of objects in
our applications, typical 512×512-pixel images contain around 50–200 objects.

B. Detection Framework

Before we describe the different detection approaches evaluated in this paper, we first consider the detection
framework in general (Fig. 2). This framework can be split intothree subsequent steps. Each detector considered
in this paper includes these steps, but may implement them ina different way. In practice, some of the steps are
optional or can be combined. Taking as input the noisy imagescontaining the objects of interest, possibly embedded
in a nonuniform background (Fig. 2(a)), the detector proceeds as follows:

Step 1 (Noise Reduction):The input imageI is preprocessed using noise reduction techniques. In most cases,
Gaussian smoothing [35] or matched filtering [36] is used, which may increase the SNR and improve image quality
and object visibility. The output of this step is a filtered image J (Fig. 2(b)).
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Step 2 (Signal Enhancement):In this step, signal processing techniques are used that enhance the denoised
fluorescent light signalonly in those regions of the imageJ where the actual objects are and, at the same time,
suppress the light signal from all the background structures. That is, the imageJ is transformed to a new grayscale
imageC (Fig. 2(c)), also called here the grayscale classification map, which does not necessarily represent the
object intensity distribution anymore. At this stage, the imageC is rather a 2-D (or 3-D) signal, the value of which
at any pixel measures the certainty in the object presence atthat position. In other words, the imageC can also
be considered a probability map that describes possible object locations. Two examples of this classification map
are shown in Fig. 2(d) and Fig. 2(e), where the imageC in Fig. 2(d) is the result of applying a correlation based
technique (in this case a matched filter), which convolves theimageJ with a PSF-like kernel and produces a high
response in regions where objects are present (where the image intensity distribution matches the kernel), and a low
response in all other image regions, suppressing the background structures. The imageC in Fig. 2(e) corresponds
to the situation where local background subtraction is usedbased on theh-dome transformation [37], which “cuts
off” the local maxima in the imageJ in the dome-like shape of equal heights.

The described feature enhancement step does not actually detect features or objects. At this stage no quantitative
information (about the object presence, its position, size, etc.) can yet be extracted and it is still up to the observer
to visually link pixels that belong to one object.

Step 3 (Signal Thresholding):To obtain the number of objects and extract position information from the grayscale
classification map, hard (binary) decision thresholds need to be applied. First, the imageC is thresholded, where
the thresholdld is applied to the signal magnitude and the binary mapCB is obtained (Fig. 2(d,e)). Disjoint clusters
of connected nonzero pixels inCB correspond to detected objects and can be used to label the pixels in the original
image I for subsequent analysis of the object intensity distribution. Depending on the imageC, the result of
thresholding may be sensitive to the value ofld. In that case, a second thresholdvd = (vmin, vmax) may be applied
to the size and/or shape of the clusters: only those clustersin CB with size larger thanvmin and smaller thanvmax

are labeled as detected objects.
In practice, the signal thresholding withld does not always produce fully connected regions (clusters of pixels)

in CB, in places where the true objects are located. In most cases,because the noise is not completely removed
during Step 1, clusters of nonzero pixels inCB that belong to the same spot are not connected or contain erroneous
zero-pixels inside the cluster. In order to solve this problem, the closing operation from mathematical morphology
[11], [38], [39] is frequently used as a postprocessing step.

III. D ETECTION METHODS

In this section we describe the detection methods that were included in our study. All of them implement the three
main steps of the general detection framework presented in the previous section. Some of the methods require noise
reduction as an explicit preprocessing step to improve the detection performance, and in our analysis we include two
filtering techniques for this purpose (Gaussian smoothing and wavelet denoising) that are computationally fast, easy
to implement, and which are frequently used in practice (Section III-A). Several alternative (nonlinear) prefiltering
techniques are also discussed.

The most characteristic feature of any detection method is its implementation of the second step of the framework
(signal enhancement). As pointed out in the introduction, we make a distinction between unsupervised (Section
III-B) and supervised (Section III-C) detection techniques. Some of them inherently reduce noise and thus do not
require an explicit noise reduction step. The third step (signal thresholding) determines the final outcome of the
detector, which is used to assess its performance. In the last subsection (Section III-D) we describe how performance
was measured in our study.

A. Noise Reduction

1) Gaussian Smoothing:Noise reduction in this case consists of smoothing the original imageI with the
Gaussian kernelGσ at scaleσ. The filtered imageJ is obtained as

J(i, j) = (Gσ ∗ I)(i, j) =

Nx
∑

i′=1

Ny
∑

j′=1

Gσ(i − i′, j − j′)I(i′, j′), (2)
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where * denotes the convolution operation. (Here, and in therest of the paper, for all methods that require the
convolution of an image with a filter kernel or mask, the image is mirrored at the borders.) In the case of additive
uncorrelated noise, this smoothing can be related to matched filtering [36], which maximizes the SNR in the filtered
images. This is because the PSF, which models the appearance (intensity profile) of the subcellular objects, can
be approximated to a high degree of accuracy by a Gaussian [33]. The smoothed imageJ can also be used as
the grayscale classification mapC, due to the fact that the imageJ is a correlation map that shows where objects
similar in shape to the PSF are located. The object locations canbe extracted by thresholding the imageJ in Step
3 (see Fig. 2), but this approach does not work in practice for typical images, which usually contain inhomogeneous
backgrounds and varying object intensities.

2) Isotropic Undecimated Wavelet Denoising:This wavelet-based filtering technique is frequently used forimage
denoising in different applications [40], but also for building a separate detection procedure (Section III-B1) [30],
[31]. The isotropic undecimated wavelet transform (IUWT) [40], [41] is well adapted to the analysis of images which
contain isotropic sources, such as in astronomy [41] or in biology [30], [31], where the object appearance or shape
is diffuse (no clear edges) and more or less symmetric. The denoising is accomplished by modifying the relevant
wavelet coefficients and inverse transforming the result. TheIUWT is usually favored over orthogonal discrete
wavelet transforms (DWT) for this purpose [42]. Contrary to the DWT, the IUWT is redundant, but translation
invariant, and the wavelet coefficient thresholding using anundecimated transform rather than a decimated one
normally improves the result in denoising applications [43].

We used the B3-spline version of the separable 2-D IUWT [31],[40], which decomposes the original image into
K wavelet planes (detail images) and a smoothed image, all of the same size as the original image. The imageI
is first convolved row by row and then column by column with the 1D kernel [1/16, 1/4, 3/8, 1/4, 1/16], which
is modified depending on the scalek by inserting2k−1 − 1 zeros between every two taps. The imageIk−1(i, j)
is convolved with the kernel giving a smoothed imageIk(i, j), and the wavelet plane is computed from these two
images as

Wk(i, j) = Ik−1(i, j) − Ik(i, j), 0 < k ≤ K, (3)

whereI0(i, j) = I(i, j). Having the wavelet representation as a set ofK + 1 images,W1, . . . , WK , IK , also called
the à trous wavelet representation, the reconstruction can be easily performed as

I(i, j) = IK(i, j) +
K

∑

k=1

Wk(i, j). (4)

For denoising and object detection, the property of the wavelets to be localized in both space and frequency
plays a major role, as it allows separation of the componentsof an image according to their size. The large
values ofWk(i, j) correspond to some structures and the smaller ones usually to noise. The denoising is based
on the modification of the imagesWk(i, j), by hard-thresholding the coefficients, and using the modifiedimages
W̃k(i, j) = Td(Wk) in the inverse transformation (4). Here, the thresholding operatorTd : I → Ith is defined as

Ith(i, j) =

{

I(i, j), if |I(i, j)| ≥ d,

0, otherwise.
(5)

The hard thresholdd depends on the standard deviation of the wavelet coefficientsσk per resolution level, and is
usually taken to be3σk. Alternatively, the wavelet coefficients may be soft-thresholded according to more advanced
schemes [44], [45]. However, for astronomical and also for biological images, soft thresholding should be avoided,
as it leads to photometry loss in regard to all objects [44].

In order to reduce the dependence of the thresholdd on the absolute values of the object and background
intensities, the thresholding is often based on Bayesian analysis of the coefficient distributions using Jeffrey’s
noninformative prior [45] (also called the amplitude-scale-invariant), which is a nonlinear shrinkage rule that
outperforms other famous shrinkage rules, including VisuShrink and SureShrink [45], and is given by

W̃k(i, j) = W−1
k (i, j)(W 2

k (i, j) − 3σ2
k)+, (6)

where(x)+ = max{x, 0}. The threshold is proportional to the standard deviation of wavelet coefficients at each
resolution level and it adaptively selects significant coefficients only. The modified filtered images̃Wk(i, j) are
used in (4) for the inverse transformation to obtain the denoised imageJ .
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3) Patch-Based Denoising:Noise can also be reduced to some extent while preserving object appearance by
using median filtering [39], maximum homogeneity neighbor (MHN) filtering [46], bilateral filtering [47], mean-shift
filtering [48], and anisotropic diffusion [49]. Among the nonlinear methods, the recently proposed patch-based noise
reduction technique [50] possesses an important discontinuity preserving property, which was shown to be important
for the detection of small objects embedded into a noisy background [51], [52]. In our study, we compared the
performance of detection based on Gaussian smoothing or wavelet denoising with preprocessing using patch-based
noise reduction.

4) Variance-Stabilizing Techniques:In order to apply the described noise reduction methods optimally, it is
usually assumed that the images are corrupted by additive Gaussian noise, where the noise variance is independent
of the signal. As mentioned in Section II-A, the intensity in fluorescence microscopy images is corrupted either by
Poisson noise, or a mixture of Poisson and Gaussian noise. The latter is more common in practice, because even
though the influence of all noise sources (thermal, readout, quantization noise, etc. [53]) except photon noise can
be made very small, it cannot be completely eliminated.

In order to make the noise variance constant over the whole image, several variance-stabilizing techniques
can be used. For the pure Poisson case, the variance-stabilizing Anscombe transform [54] can be applied, which
transforms the image intensities according toI(i, j) → 2

√

I(i, j) + 3/8, and creates approximately Gaussian data
of unit variance, provided that the Poisson data has a mean value larger than10 [54]. For mixed Poisson-Gaussian
processes, the generalized Anscombe transform (GAT) is usually applied [51], [55], where the transformation
parameters can be estimated from the image data, for exampleusing non-parametric regression [51]. Another
variance-stabilizing transform that outperforms (and canbe reduced to) the GAT is proposed in [29], which is
applicable to Poisson data with mean value less than10, or to mixed Poisson-Gaussian data.

B. Unsupervised Signal Enhancement

1) Wavelet Multiscale Product:As mentioned in Section III-A2, in thèa trous wavelet representation, contrary to
the frequently used orthogonal wavelet transform [42], thewavelet coefficients are correlated across the resolution
levels (scales). This property is exploited by the detectionapproach based on the multiscale product [31], which
uses the same image decomposition as in Section III-A2 and creates the multiscale product image as

PK(i, j) =
K
∏

k=1

Wk(i, j). (7)

This transformation constitutes Step 2 in the general detection framework (Section II-B). For better performance, the
original algorithm [31] also includes a noise reduction step (Step 1) using the technique described in Section III-A2:
the wavelet coefficients are hard-thresholded per scale,W̃k(i, j) = Tdk

(Wk(i, j)), with the thresholddk = kdσk,
kd = 3, and the modified coefficients̃Wk(i, j) are used in (7).

This method uses the fact that the real objects are represented by a small number of wavelet coefficients that are
correlated across the scales. Contrarily, the coefficients that are due to noise are randomly distributed and are not
propagated across scales. As a result, the imagePK(i, j), which is the grayscale classification mapC, is thresholded
with ld and binarized. The connected components in the binary mapCB are considered as detected objects (Step
3). In the original algorithm [31],ld = 1.0 and no thresholds on the cluster sizevd in the thresholded and binarized
PK(i, j) were imposed [31]. In summary, this method has three parameters,(ld, kd, K), that are not directly related
to the object appearance. Recently, a modification of the described method, which uses the Gaussian kernel at
several scales instead of B3-splines, was proposed for segmentation and analysis of nuclear components in stem
cells [56].

2) Multiscale Variance-Stabilizing Transform Detector:Another detection scheme based on theà trous wavelet
decomposition was presented in [29]. This method uses the multiscale variance-stabilizing transformation [29],
which is applied to eachIk′(i, j), k′ = {k − 1, k} in (3), before computing the correspondingWk(i, j). Then,
the significant wavelet coefficients are detected per wavelet plane by performing multiple hypothesis testing based
on Benjamini-Hochberg procedure, which controls the falsediscovery rate (FDR) [29]. The control of the FDR
usually has a greater detection power and can be applied to correlated data, which is important due to the fact
that theà trous representation is overcomplete. For the actual object detection, the pixel values inIK(i, j) and
all the insignificant wavelet coefficients are zeroed, and the reconstruction (4) is performed. In the reconstructed
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image, which is the grayscale classification mapC, the background will be largely removed but smaller object-like
structures retained. The mapC is binarized by thresholding the negative pixel values to zero. Then, the connected
components of nonzero pixels inCB are counted as detected objects. In summary, the method has two parameters,
(K, γ), that are not related to the object appearance, whereγ controls the FDR and usually is in the range of
10−10 − 10−2.

3) Top-Hat Filter: Another class of methods that are used for detection of bright spots in the presence of widely
varying background intensities is known as top-hat filters [25], [26]. Such filters are dynamic thresholding operators,
rather than the similarly named image transformation from mathematical morphology. The latter transformation
selects extended objects with sufficiently narrow parts, rather than compact objects, as does the top-hat filter
considered here.

The filter discriminates the spots by their round shape and predetermined information about their intensity and
size. At each pixel location,(i, j), the average image intensitiȳItop and Ībrim are calculated for pixels within two
circular regionsDtop andDbrim, respectively, defined as

Di,j
top = {(i′, j′) : (i − i′)2 + (j − j′)2 < R2

top}, (8)

Di,j
brim = {(i′, j′) : R2

top < (i − i′)2 + (j − j′)2 < R2
brim}, (9)

where the radiusRtop corresponds to the “top” of the “hat” and is set to the maximumexpected spot radius. The
brim radius,Rbrim (Rbrim > Rtop), is often taken to be the shortest expected distance to the neighboring spot. If the
differenceĪtop− Ībrim is larger than some thresholdHth, the original image intensityI(i, j) for that position(i, j)
is copied to the classification mapC, C(i, j) = I(i, j), otherwiseC(i, j) = 0. The procedure is repeated for each
pixel, and the binary mapCB (Step 3) is obtained asCB(i, j) = 1 if C(i, j) 6= 0, andCB(i, j) = 0 otherwise. The
connected components are counted without any size or shape threshold.

The heightHth of the top above the brim is set to the minimum intensity that aspot must rise above its immediate
background. It can also be related to the minimum local SNR that we are willing to deal with. If the detection of
all the objects with local SNR> a is required, because for lower SNRs the detector would produce a lot more
false positives and contaminate the analysis, the threshold Hth can be fixed toaσbrim, whereσbrim is the standard
deviation of the intensity distribution in the regionDbrim.

In summary, the described algorithm has only three parameters, (Hth, Rtop, Rbrim), which can be related to the
object appearance. The noise reduction (Step 1) in this case isimplicitly done while calculating the average image
intensitiy Ītop and Ībrim. The averaging decreases the variance in the estimation of the noisy object and background
intensity levels and improves the robustness and performance of the method. A slightly modified version of the
filter, called the top-hat box filter [26], uses a square mask forthe regionsDtop andDbrim and is computationally
faster, but in the present context this is not an important advantage.

4) Spot-Enhancing Filter:The optimal filter for enhancing subresolution particles and reducing correlated noise
in microscopy images is the whitened matched filter, which is well approximated by the Laplacian of a Gaussian
(LoG) [28]. In this case, the convolution kernel(2σ2

L− i2− j2)σ−4
L GσL

is used in (2) to obtain the imageJ , where
the filter parameterσL must be tuned to the size of the particles. The filter combines Steps 1 and 2 and operates
as a local background subtraction technique that preservesobject-like structures and removes the background and
noise. The filter can be made computationally fast by separableimplementation [28]. The result of LoG filtering,
the imageJ , is used as the classification mapC, which is thresholded withld to locate the objects. This detection
procedure has two parameters, (σL, ld), and is similar to the top-hat filter (Section III-B3), with the difference that
here the convolution kernel, also called the “Mexican hat”,represents a continuous version of the top-hat filter
mask.

5) Grayscale Opening Top-Hat Filter:Similar to the method above (Section III-B3), this top-hat filter uses the
opening operation from mathematical morphology [38], [39], [57]. In order to improve the detector performance,
the original imageI is first smoothed with the Gaussian kernel with scaleσ (Step 1) and the grayscale opening of
J with a structuring elementA is done, producing the imageJA, where in our case a flat disk of radiusrA is used.
The radiusrA is related to the size of the largest objects that we would like to detect. The top-hats are obtained
after the subtractionC = J − JA (which concludes Step 2), and the whole transformation acts as a background
subtraction method that leaves only compact structures smaller than the diskA, or extended objects with sufficiently
narrow parts, rather than compact objects only, as does the top-hat filter. The resulting imageC is thresholded at
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level ld (Step 3), and then all the connected components are counted. Additional filtering with vd can be done if
the size of the connected components should be taken into account. Thus, this method has four parameters, (σ, rA,
ld, vd), all of which can be related to the object appearance.

6) H-Dome Based Detection:Another approach borrowed from grayscale mathematical morphology is based
on theh-dome transformation [37], which was used in our previous works on subresolution particle tracking to
design a detection scheme for track initiation and termination [21], [22]. The transformation has the interesting
property that all the detected objects end up having the samemaximum intensity in the transformed image, which
we exploited to build a fast probabilistic tracker that outperforms current deterministic methods [22] and at the
same time has the same tracking accuracy as the computationally more expensive particle filtering approaches for
tracking [20], [22].

For this method we assume that the intensity distribution inthe imageI is formed byNo objects (bright spots),
modeled using (1), background structures (also called clutter) with intensity distributionB(i, j), and possibly
spatially correlated additive or multiplicative noiseη(i, j). The main problem is to accurately estimate the number
of real objectsNo and the object positions(xl, yl)

T , l = {1, . . . , No}, in the presence of inhomogeneous background
structures and noise. The algorithm also consists of three steps: filtering,h-dome transformation, and “sampling”
(signal thresholding). First, the imageI is LoG filtered with scaleσL, which enhances the signal in the places where
objects are present and performs local background subtraction (Step 1). The scaleσL can be related to the size of
the objects to be detected, and in our experiments is equal to2.5 pixels (125 nm). Then, grayscale reconstruction
[37] is performed on the LoG-filtered imageJ with mask imageJ − h, whereh > 0 is a constant (Step 2). As a
result, the original image is decomposed into the reconstructed imageBσ and the so-calledh-dome imageHσ:

Iσ(i, j) = Hσ(i, j) + Bσ(i, j). (10)

Geometrically speaking, similar to local background subtraction, theh-dome transformation extracts bright structures
by “cutting off” the intensities of heighth from the top, around local intensity maxima, producing “dome”-like
structures. Contrary to top-hat filtering [37], this does notinvolve any shape or size criteria. The imageBσ represents
the nonuniform background structures, and imageHσ contains the objects and all the smaller noise structures.

After the transformation, the maximum intensity of those Gaussian-like objects is approximatelyh, and for the
noise structures the amplitude is less thanh [22]. This transformed imageHσ is used as a probability map for the
final step of the algorithm (Step 3): the sampling. During this step, all the pixel values inHσ are raised to the
powers in order to compensate for the broadening of the original object intensity distributions by the convolution
with the LoG filter, and to create a highly peaked function that resembles the probability density function (pdf) of
the object location distribution. The parameters can be related to the maximum and minimum object size and the
scaleσL [22]. The functionHs

σ(i, j) = (J(i, j) − Bσ(i, j))s is used in our framework as a so-called importance
sampling function [58], denoted byq(i, j|I), that describes which areas of the image most likely containthe
objects. We sampleN position-samples fromq(i, j|I) using systematic resampling [58],xl ∼ q(i, j|I), where
l = {1, . . . , N} and x = (i, j), in order to estimate the object positions using Monte Carlomethods. Then, the
mean-shift algorithm [48] is used to cluster the samplesxl, resulting inM clusters. For each cluster, the mean
positionxc = (ic, jc) and the varianceRc are computed using only theNc samplesxl belonging to that cluster:

xc = E[xl
c] = N−1

c

∑Nc

l=1 xi
c,

Rc = E[(xl
c − xc)(x

l
c − xc)

T ].
(11)

The following two criteria are used to distinguish between real objects and other structures: 1) the number of
samplesNc in the cluster should be larger than the number of samples in case of sampling from the uniform
intensity distribution in the image region occupied by the cluster, and 2) the determinant of the covariance matrix
of the cluster, detRc, must be less thanσ4

M/s2, where σM characterizes the maximum object size that we are
interested in. These two thresholds are motivated by the factthat the elements of the estimated covariance matrix
Rc using the samples generated from the intensity distribution of the real objects, are bounded from above by
(σ2

max + σ2
L)s−1. The samples that came from noise have approximately the samevariance (Rc ≈ σ2

LIs−1), where
I is the identity matrix, but since the intensity amplitude≪ h, the number of samplesNc in the corresponding
cluster will be below the mentioned threshold. The clutter onthe other hand, having possibly high intensity values
(≈ h), produces a large number of samples, but the variance in those clusters is higher than in the case of the
largest real object characterized byσM .
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The parametersσL and σM of this detection method can be related to the object appearance. The heighth is
related to the SNR in the same way as in the case of the top-hat filter (Section III-B3). The method is fairly
insensitive to the free parameterss andN [21], [22] (above some minimum, sensible values, which can be found
experimentally and then fixed, these parameters primarily affect the computational cost of the method, not its
accuracy). Thus, in summary, this method depends mainly on three parameters, (σL, σM , h), that need to be tuned
to the application.

7) Image Features Based Detection:The last unsupervised method that we consider in this study isbased on
using some additional image information during Step 2 that would help to distinguish the spots from the clutter. As
was shown previously [20], [27], the incorporation of localcurvature information can be used to build a reasonably
good detector for image data with SNR> 4. The true spots in the image are characterized by a combination of
convex intensity distributions and a relatively high intensity. Noise-induced local maxima typically exhibit a random
distribution of intensity changes in all directions, leading to a low local curvature [27]. These two discriminative
features (intensity and curvature) are used in combinationduring Step 2 to create the grayscale classification map
C using the denoised image (Step 1)J(i, j) = (Gσ ∗ I)(i, j) as follows:

C(i, j) = J(i, j)κ(i, j), (12)

where the curvatureκ(i, j) at each pixel ofJ is given by the determinant of the Hessian matrixH(i, j) [35],

which itself is known to be a good blob detector [59], whereH(i, j) = (∇ · ∇T I)(i, j) and∇ =
(

∂
∂x

, ∂
∂y

)T

. The
classification mapC again is binarized (Step 3) using the thresholdld and possibly the size thresholdvd which are
not directly related to the object appearance.

C. Supervised Signal Enhancement

In order to make our comparison study of spot detection methods more complete, we also included two machine
learning (ML) techniques. The first one is the AdaBoost algorithm [60], which is frequently used for object
detection in computer vision [60]–[62], and was recently shown to perform well also for spot detection in molecular
bioimaging [32]. The second method is Fisher discriminant analysis (FDA), which is a classical and well-known
linear classifier, but which has not been employed for spot detection in fluorescence microscopy up to now. It uses
the same information as AdaBoost but is computationally less expensive and much easier to understand conceptually.

1) AdaBoost:This ML detection algorithm operates on small patches of the image around the hypothesized spot
positions (Fig. 3(a)) and classifies the patches (Fig. 3(b)) as positive (object is present) or negative (object is absent)
based on the combined response of several simple feature-based classifiers. Usually the feature-based systems are
favored over pixel-based ones because they are much faster and can encode some domain knowledge. A set ofNF

simple Haar-like features is used [63], which is overcomplete in comparison with the real Haar basis [42], and in
our case consists of four kinds (four different rows in Fig. 3). For each featureηl, l = {1, . . . , NF }, the feature
valueξ(ηl) is a weighted difference between the sum of the pixels withintwo (black and white) rectangular regions.
The weights are chosen in such a way that the value of the feature computed for constant-intensity images is zero.
The number of possible features, which are scaled and translated versions of the features of each kind (Fig. 3),
depends on the image patch size, and for 10×10-pixel image subwindows [32] is 962 (the number of features per
kind is indicated below each feature row in Fig. 3). Using the integral images [60], the computation of the sums
of pixels in the rectangular regions can be performed very fast.

Having the pool ofNF featuresηl, and a training set consisting ofNT image patches labeled as positive andNT

patches labeled as negative, we selected a variant of the AdaBoost learning algorithm that can be used both to select
a small subset of features and to train the classifier [60]. Thischoice was made based on recently published results
of applying the AdaBoost algorithm in bioimaging [32]. The AdaBoost algorithm is used to boost the performance
of a simple (weak) learning algorithm. The weak classifier is designed to select the single feature that best separates
the positive and negative samples. In our case, this separation is accomplished by finding the appropriate threshold
dl for each featureηl at every round during the training stage. With each run of thealgorithm, one feature is selected
and added to the set of best discriminating features. The number of runs, denoted byNAB, is user-defined. It is
known that the training error of the strong classifier approaches zero exponentially in the number of rounds [61].

The final strong classifier is a weighted linear combination of all selected weak classifiers. The classification map
CB (Step 3) is constructed as follows. First, for each pixel(i, j) of I the value of the featureηl′ is computed using
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Fig. 3. Examples of the Haar-like features that were used in the experiments to detect spots, and the numbers of all possible scaled and
translated versions in 10×10-pixel subwindows of the image.

the corresponding 10×10-pixel image subwindow centered at(i, j) and assigned toC l′(i, j), wherel′ specifies one
of theNAB features that were selected during the training. This way, the imageCl′ is obtained. Then, the values in
Cl′ are thresholded using the feature thresholddl′ , producing a binary versionCl′

B of Cl′ . The procedure is repeated
for all NAB features, and the imagesCl′

B, l′ = 1, . . . , NAB, are combined (with weights also learned during the
training) into C, which is then thresholded with the thresholdld = 0.5 [60], producing the mapCB. In the final
classification map, some additional thresholding using the size informationvd (not related to the notion of spot
size) might be needed in order to remove small regions with misclassified pixels.

By applying the trained classifier to the imageI (Step 2), prefiltering (Step 1) is performed implicitly: the
values of the features are the difference in average pixel values in the black and white rectangular regions. This
averaging reduces the variance of the feature value estimation in a similar way as in the case of the top-hat filter
(Section III-B3).

2) Fisher Discriminant Analysis:Discriminant analysis is a statistical technique which classifies objects into one
of two or more groups based on a set of features that describe the objects [64]. We use FDA to classify the image
patches in the same way as in the AdaBoost method (Section III-C1). For an image patch of sizen × n pixels,
the n horizontal rows of pixels are concatenated into a 1-D (column) feature vectory of sizen2. Having a labeled
training dataset with positive and negative samples (imagepatches), the corresponding sets of features{yl

1}
NT

l=1 and
{yl

0}
NT

l=1 are used to compute the meanµc and the covariance matrixΣc for each classc = {0, 1}. The task of
FDA is to find the linear transformationw that maximizes the ratio

Q(w) =
(wT (µ1 − µ0))

2

wT (Σ1 + Σ0)w
. (13)

In some sense,Q(w) is a measure of the SNR for the class labeling, where the numerator represents the between-
class variation and the denominator represents the within-class variation. It can be shown that the optimal separation
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occurs whenw = (Σ1 + Σ0)
−1(µ1 − µ0) [64]. This concludes the training stage. During the classification stage,

when FDA is applied to patches extracted from the imageI using a sliding subwindow of sizen × n pixels, the
patch is classified as positive (object is present,CB(i, j) = 1) if the condition |wTy − µ1| < |wTy − µ0| is
satisfied, and as negative (object is absent,CB(i, j) = 0) otherwise.

The FDA classification procedure has an appealing interpretation as linear filtering (similar to (2)) with a kernel
that is learned from the training data. Then2-dimensional vectorw can be reshaped into ann×n patch, similar to
the image patch from which the feature vectory is formed (see examples in Section IV-B, Fig. 18). In this case,
the projectionwTy, which is performed using the sliding subwindow for each image pixel, is a convolution as in
(2). The classification mapC is obtained by thresholding the convolution result atld = 1

2w
t(µ1 − µ0), which is

obtained automatically because the training was performedbeforehand.

D. Signal Thresholding and Performance Measures

As mentioned before, in order to locate and count the detected objects, the classification mapC is binarized
using the thresholdld (whose meaning depends on the method), and the connected components are searched for.
Having the binary imageCB, whereCB(i, j) = 1 if C(i, j) > ld, andCB(i, j) = 0 otherwise, we run the sequential
scan labeling algorithm [65] in order to label the connectedcomponents and obtain the set of labelsL(i, j) for
all pixels, whereL(i, j) ∈ {0, . . . , M}, with L = 0 corresponding to the background andL 6= 0 denoting one
of the M detected objects. The center of mass,xm, is calculated for each ofM objects, taking into account the
pixels (i, j) and the image intensityI(i, j) for all (i, j) for which L(i, j) = m. The position is compared to the
“ground truth”x0

m (known exactly in the case of synthetic images, and obtainedmanually by approximation in the
case of real biological images). If‖x0

m − xm‖ < ∆0, the object is counted as a true positive (TP), otherwise the
detected object is a false positive (FP). The number of false negatives (FN) is defined asN0 − NTP, whereN0 is
the number of objects in the ground truth andNTP is the number of TPs. True negative (TN) is defined as accurate
detection of the spot not to be an object. The number of TNs can bedefined only for the ML approaches during
the training stage. During the actual detection with any of the described methods, the number of TNs in the image
data is undefined.

In order to measure the performance of the algorithms, we consider two common measures: the true-positive
ratio (TPR), TPR =NTP/(NTP + NFN) = NTP/N

0, also called sensitivity, and the false-positive ratio (FPR), FPR
=NFP/(NFP + NTN). Because TN is not known for some methods, the modified version of FPR is used, given by
FPR∗=NFP/N

0. In this case, the standard receiver operating characteristic (ROC) curve cannot be built, and the
modified version, called the free-response receiver operating characteristic (FROC) curve, is used [66], [67]. To
demonstrate the sensitivity of TPR and FPR∗ to parameters, for example the thresholdld, we measure the values
ST = − (∂TPR/∂ld) and SF = − (∂FPR∗/∂ld) at ld = l∗d. The thresholdl∗d is hereafter called “optimal” and
corresponds to the value for which the FPR∗ = 0.01 (only 1% false positives). The value of TPR forld = l∗d is
denoted as TPR∗. Having ST and SF , we can compute the value∆TPR = 0.01ST l∗, which corresponds to the
changes in TPR (around TPR*) when the parameter valueld (or vd) is changed by 1% aroundl∗ (or v∗). Similarly,
∆FPR= 0.01SF l∗ can be introduced for the FPR.

IV. EXPERIMENTAL RESULTS

The performance of the nine detection methods (seven unsupervised and two supervised methods) described
in the previous section was quantitatively evaluated usingboth synthetic images (Section IV-A) and real image
data (Section IV-B) acquired for different biological studies. In the experiments, we studied the dependence of the
performance (TPR and FPR∗) on parameter settings, type of object (perfectly round or slightly elongated), and
image quality (SNR). Here we describe the experimental setups and the results.

A. Evaluation on Synthetic Image Data

1) Simulation Setup:The described detection methods were evaluated using synthetic but realistic 2-D images
(of size 512 × 512 pixels, with ∆x = ∆y = 50 nm) containing intensity profiles of round and elongated objects
modeled using (1) withσmax = σmin = 100 nm for round objects, andσmax = 250 nm,σmin = 100 nm for elongated
objects, for different levels of Poisson noise in the range ofSNR= 2–4. Such SNRs are typical for the real image
data acquired in our biological applications and are lower than the critical level of SNR= 4–5, at which several
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Fig. 4. Examples of synthetic images used in the experiments. The symmetrical Gaussian intensity profiles are embedded into uniform
(Type A), gradient (Type B), and non-uniform (Type C) backgrounds.

classical detection methods break down [23], [24]. Here, SNRis defined as the difference in intensity between the
object and the background, divided by the standard deviation of the object noise [23].

In order to estimate the performance of the algorithms, three types of images were created (see Fig. 4), for each
type of object shape and for each SNR. In every image, 256 Gaussian intensity profiles were placed at positions
x0

i′,j′ = (16 + 30i′ + U[−10,10], 16 + 30j′ + U[−10,10])
T , wherei′ = 0, . . . , 15, j′ = 0, . . . , 15, andU[−a,a] denotes

the uniform random generator within the interval(−a, a). This way, the objects were randomly placed, with no
overlaps in the intensity distributions. Type A images wereconstructed by adding a background level of 10, similar
to previous studies [23]. To form the final noisy image, a Poisson noise generator was applied independently to
every pixel of the noise-free image. In the case of Type B images, the background level increased linearly in the
horizontal direction (see Fig. 4), from a value of 10 at the left image border to 50 at the right border. Taking into
account that the variance of Poisson noise is intensity dependent, we corrected the object intensities accordingly
prior to application of the noise generator in order to keep the SNR constant over the whole image. Finally, type
C images mimic the intensity distribution in the presence oflarge (compared to object size) background structures
(clutter), which are sometimes present in the real image data and can be either larger subcellular structures or
acquisition artifacts. In this case, the pixel values were sampled from the normal distributionI0(i, j) ∼ N (0, 150).
Then, the image was convolved with the Gaussian kernelG10 and thresholded at zero-level. The final imageI
was obtained by adding toT0(G10 ∗ I0) a constant background level of 10 plus the (SNR-adapted) object intensity
profiles, followed by application of Poisson noise. Examples ofsynthetic images of all three types are shown in
Fig. 4. In every experiment, the performance of the detectiontechniques for each object type was evaluated by
accumulating the numbers of TP and FN for 16 images (each containing 256 ground truth objects) and averaging
the results over the 4096 objects. The distance between the ground truth location and the object position estimated
by the detector,∆0, which defines if the detected object is a TP or FP, was fixed to∆0 = 200 nm (4 pixels).

2) Wavelet Multiscale Product:For the performance evaluation of the wavelet multiscale product detector (further
abbreviated as WMP), the parameters of the method (see SectionIII-B1) were fixed to the values described in the
original paper [31]:ld = 1, K = 3, kd = 3. The performance measures TPR and FPR∗ for the image data with
SNR= 2 are shown in Table I. In order to evaluate the sensitivity of the method to parameter changes, we varied
the number of scalesK and the wavelet coefficient thresholdkd in our experiments and studied their influence on
the behavior of TPR and FPR∗. In the experiments, the grayscale classification mapC produced by the method was
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TABLE I
PERFORMANCE OF THEWMP DETECTOR USING THE ORIGINAL ALGORITHM PARAMETERS ATSNR= 2.

Image Round Objects Elongated Objects
Type TPR FPR∗ TPR FPR∗

A 0.33 0.001 0.34 0.013
B 0.18 0.001 0.20 0.010
C 0.21 0.015 0.25 0.017

TABLE II
OPTIMAL PARAMETERS AND PERFORMANCE OF THEWMP DETECTOR ATSNR= 2 AND NUMBER OF SCALESK = 3.

Image Round Objects Elongated Objects
Type k∗

d TPR∗ ST SF k∗

d TPR∗ ST SF

A 2.22 0.81 .57 .04 3.06 .31 .61 .05
B 2.56 0.37 .56 .05 3.07 .17 .36 .05
C 2.89 0.30 .62 .09 3.17 .18 .39 .06

TABLE III
OPTIMAL PARAMETERS AND PERFORMANCE OF THEMSVST DETECTOR ATSNR= 2 AND NUMBER OF SCALESK = 3, γ∗

= 10
−S

∗

.

Image Round Objects Elongated Objects
Type S∗ TPR∗ ST SF k∗

d TPR∗ ST SF

A 2.9 0.99 .00 .01 2.9 .99 .00 .03
B 2.9 0.99 .00 .02 2.9 .99 .00 .02
C 6.8 0.93 .03 .01 7.2 .96 .02 .01

thresholded atld, and after binarization all the connected components were labeled as detected objects. Because
the method produced quite fractured clusters of pixels, we used the morphological opening operator with a square
3 × 3 mask (a5 × 5 mask yielded very similar results) in order to fill in the holes.

The main results of the sensitivity analysis for this method are shown in Fig. 5. They show that a value of
K = 3 is a good compromise to maximize performance for all three different data types together (Fig. 5(a)-(c)).
The results also show that the performance of this method drops quite rapidly when the SNR decreases from 4
to 2 (Fig. 5(d)), and also when the background complexity increases (Fig. 5(e)-(f)). Table II shows the “optimal”
values ofkd for different types of data forld = 1, K = 3, and SNR= 2.

For comparison, we also applied the soft thresholding of thewavelet coefficients according to (6) instead of the
original hard thresholding withkd = 3. For round objects in Type C images at SNR= 2, using the hard threshold
kd = 3, we had FPR∗ = 0.015 and TPR= 0.21. The value ofld was increased to 34 when the soft threshold (6)
was used in order to obtain the same FPR∗, and the TPR in this case was equal to 0.25. For elongated objects the
corresponding values were FPR∗ = 0.017 and TPR= 0.25 for the hard thresholding, and TPR= 0.27 for the soft
thresholding.

Another experiment was conducted in order to investigate ifthe low performance of the WMP for SNRs
around 2–3 was dependent on the type of noise (Poisson versus Gaussian). The variance-stabilizing Anscombe
transform [54] was applied (see Section III-A4). The experiments with the variance-stabilized (Gaussian) images
showed no significant difference in TPR and FPR for all types of image data compared to the original (Poisson)
synthetic images.

3) Multiscale Variance-Stabilizing Transform Detector:The performance of the multiscale variance-stabilizing
transform detector (further abbreviated as MSVST) was studieddepending on the value of the parameterγ, which
controls the FDR. The number of wavelet planes was fixed toK = 3, which similarly to the experiments with the
WMP was found to maximize the performance for all types of image data. The TPR and FPR* of the method for
different values ofγ are shown in Fig. 6. The optimal values ofγ and the corresponding performance measures
for the image data with the SNR= 2 are shown in Table III.

4) Top-Hat Filter: To study the performance of the top-hat filter (further abbreviated as TH), the brim radius,
Rbrim, which controls the local background estimation around thespot position, was fixed to 10 (see Section III-B3
for the parameters description). Varying this parameter inthe range 8-12 did not influence the final results
significantly, indicating that the local background estimation is quite robust. The TPR and FPR∗ of the method for
differentRtop values, depending onHth, are shown in Fig. 7. Again, holes within clusters (objects) in the binarized
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Fig. 5. FROC curves for the WMP detector in the case of the round objects,depending on the wavelet coefficient thresholdkd, for Type
A (a), Type B (b), and Type C (c) image data and different numbers of scalesK, and the FROC curves for Type C data for different SNRs
(d). The same type of FROC curves in the case of the round (e) and elongated (f) objects for different types of data, with SNR= 2 and
K = 3.

classification mapCB were filled using the closing operation with a5×5 mask. All found clusters were considered
as objects, regardless of cluster size. The optimal values ofHth for all image types with SNR= 2 are shown in
Table IV. The value ofRtop = 3 was chosen, which maximizes the TPR when FPR∗ = 0.01 for Type C data with
both round and elongated objects.

5) Spot-Enhancing Filter:The performance of the spot-enhancing filter (further abbreviated as SEF) using the
synthetic images was studied depending on the values of the signal thresholdld (see Section III-B4). The filter acts
as a smoothing and local background subtraction technique at the same time (Steps 2 and 3). The only parameter
is the scale of the convolution kernel,σL, which was tuned in order to get the highest TPR at FPR∗ = 0.01 in the
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Fig. 6. FROC curves for the MSVST detector in the case of round (a) andelongated (b) objects, depending on the values of the threshold
γ the type of image data, at SNR= 2 and optimal scaleK = 3.

TABLE IV
OPTIMAL PARAMETERS AND PERFORMANCE OF THETH DETECTOR ATSNR= 2 WITH RADII Rbrim = 10 AND Rtop = 3.

Image Round Objects Elongated Objects
Type H∗

th TPR∗ ST SF H∗

th TPR∗ ST SF

A 2.74 .99 .00 .05 2.95 .99 .00 .20
B 5.85 .88 .11 .03 5.75 .96 .04 .02
C 5.28 .48 .35 .01 5.62 .56 .38 .01

TABLE V
OPTIMAL PARAMETERS AND PERFORMANCE FOR THESEFDETECTOR ATSNR= 2 AND OPTIMAL SCALES σL = 2.5 (FOR ROUND

OBJECTS) AND σL = 3.1 (FOR ELONGATED OBJECTS).

Image Round Objects Elongated Objects
Type l∗d TPR∗ ST SF l∗d TPR∗ ST SF

A 0.85 .99 .01 .15 0.55 .99 .00 .16
B 1.84 .91 .35 .08 1.21 .99 .07 .06
C 1.22 .95 .29 .09 0.99 .95 .34 .07

case of Type C data. In the case of round objects, forσL values{1.5, 2, 2.5, 3, 3.5}, the corresponding TPR values
were{0.52, 0.9, 0.95, 0.9, 0.65}, and thusσL = 2.5 was used in the experiments. In the case of elongated objects,
for σL in {2.5, 3, 3.5, 4}, the corresponding TPR values were{0.75, 0.86, 0.92, 0.74}, andσL = 3.1 was used. All
clusters in the binary classification map after signal thresholding were counted as objects, and the valuesl∗d and
corresponding TPR∗, ST , andSF , for which FPR∗ = 0.01, are shown in Fig. 8 and Table V. Again, the valuel∗d
represents the optimal threshold, for which FPR∗ = 0.01, with corresponding TPR denoted as TPR∗.

6) Grayscale Opening Top-Hat Filter:This detection method from grayscale morphology (further abbreviated
as MTH) is a robust local background subtraction technique. Its performance was not influenced significantly by
changes of the mask size,rA, in the range[3, 5] (see the parameter description in Section III-B5). The input images
were first smoothed with the Gaussian kernel atσ = 2. The radius of the mask was fixed torA = 5, which means
that all image structures of size smaller than the size of thedisk A would be translated to the detection mapC. Two
thresholds, one on the intensity amplitude and one on the object size, could be applied for the object extraction
from C. The latter threshold is crucial if the clutter consists of possibly elongated narrow structures, which would
be considered as objects by this detector (see Section III-B5). We studied the dependence of TPR and FPR∗ only
on the intensity thresholdld, as in the synthetic images there are no clutter structures smaller than the object size.
In this case, either intensity thresholding can be used without size thresholding, or a low intensity threshold can
be used with further thresholding on the size. The valuesl∗d, and corresponding TPR∗, ST , and SF , for which
FPR∗ = 0.01, are shown in Fig. 9 and Table VI.

7) H-Dome Based Detection:The method based on theh-dome transformation (further referred as HD) was
evaluated depending on the dome heighth. The parameters of the method (see Section III-B6) were fixed to
σL = 2.5, σM = 6, s = 6, andN = 5000, which maximize the TPR for the Type C image data at FPR∗ = 0.01.
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Fig. 7. FROC curves for the TH detector in the case of the round objects, depending on the values ofHth, for several values ofRtop, for
Type A (a), Type B (b), and Type C (c) image data, and the FROC curves for Type C data for several SNRs (d). The same type of FROC
curves in the case of the round (e) and elongated (f) objects dependingon the values ofHth for different types of data, with SNR= 2,
Rbrim = 10, andRtop = 3.

TABLE VI
OPTIMAL PARAMETERS AND PERFORMANCE FOR THEMTH DETECTOR ATSNR= 2 AND WITH MASK RADIUS rA = 5 AND GAUSSIAN

PREFILTERING ATσ = 100 nm.

Image Round Objects Elongated Objects
Type l∗d TPR∗ ST SF l∗d TPR∗ ST SF

A 2.1 .99 .00 .04 2.1 .99 .00 .04
B 3.5 .87 .18 .06 4.1 .98 .05 .02
C 2.2 .88 .31 .03 3.2 .91 .15 .02

The results of the experiments are shown in Fig. 10. As described, the method estimates the object position and
the variance of that estimation using a sampling procedure,bypassing the explicit creation of the mapC [22]. The
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Fig. 8. FROC curves for the SEF detector in the case of round (a) and elongated (b) objects, depending on the values of the thresholdHth

and the type of image data, at SNR= 2 and optimal scalesσL = 2.5 (for round objects) andσL = 3.1 (for elongated objects).
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Fig. 9. FROC curves for the MTH detector in the case of round (a) and elongated (b) objects, depending on the values of intensity threshold
ld for different types of image data, at SNR= 2, and with mask radiusrA = 5 and Gaussian prefiltering atσ = 100 nm.
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Fig. 10. FROC curves for the HD detector in the case of round (a) and elongated (b) objects, depending on the values of the dome height
h for different types of image data, at SNR= 2, and with parametersσL = 2.5, σM = 6, s = 6, andN = 5000.

valuesh∗ and corresponding TPR∗, ST , andSF , for which FPR∗ = 0.01, are shown in Fig. 10 and Table VII.
8) Image Features Based Detection:This scheme (further abbreviated as IFD) creates the classification map

C during Step 2 by combining the image intensities with local curvature information (see Section III-B7). Two
types of the mapC were considered in the experiments (with the resulting methods abbreviated as IFD1 and IFD2

respectively). In the first case,C is given by the determinant of the Hessian matrix,detH, calculated at each pixel,
with smoothing scaleσ [35]. The second type of classification mapC is obtained by pixel-wise multiplication of
the valuesdetH(i, j) with the intensity valuesJ(i, j) (2). In the experiments, we usedσ = 2, and the results are
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TABLE VII
OPTIMAL PARAMETERS AND PERFORMANCE FOR THEHD DETECTOR ATSNR= 2 FOR PARAMETERSσL = 2.5, σM = 6, s = 6, AND

N = 5000.

Image Round Objects Elongated Objects
Type h∗ TPR∗ ST SF h∗ TPR∗ ST SF

A 1.6 .99 .11 .05 1.4 .99 .01 .09
B 1.6 .97 .22 .05 1.4 .99 .01 .09
C 1.6 .90 .21 .05 1.2 .97 .16 .05
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Fig. 11. FROC curves for the IFD1 detector in the case of the round (a) and elongated (b) objects, depending on the values of the threshold
ld and the type of image data, at SNR= 2, and for smoothing scaleσ = 2. The same curves for IFD2 in the case of round (c) and elongated
(d) objects.

TABLE VIII
OPTIMAL PARAMETERS AND PERFORMANCE FOR THEIFD DETECTORS ATSNR= 2 AND FOR SMOOTHING SCALEσ = 2.

Image Round Objects Elongated Objects
Type l∗d TPR∗ ST SF l∗d TPR∗ ST SF

IFD1

A .12 .98 0.67 .68 .21 .53 5.17 .42
B .58 .67 1.23 .12 .71 .31 1.02 .06
C .18 .89 2.51 .16 .28 .31 3.21 .26

IFD2

A 1.33 .99 .03 .03 3.06 .59 .32 .03
B 33.34 .46 .01 .00 43.36 .23 .01 .00
C 1.95 .71 .36 .03 6.33 .19 .08 .01

shown in Fig. 11 and Table VIII.
9) AdaBoost: In order to test the performance of the ML approaches, starting with AdaBoost (abbreviated as

AB) for the detection of round objects, we constructed a poolof 962 Haar-like features (see Section III-C1) using
a 10×10 pixel subwindow, which was previously reported as optimal for similar applications [32]. Experiments



IEEE TRANSACTIONS ON MEDICAL IMAGING 20

TABLE IX
SENSITIVITY AND SPECIFICITY OF ADABOOST CLASSIFICATION.

Image Type A Image Type B Image Type C
SNR TPR Spec. TPR Spec. TPR Spec.

Trained using type A data (SNR= 2)
2 0.994 0.995 0.999 0.930 0.965 0.987
3 1.0 0.996 1.0 0.922 1.0 0.989
4 1.0 0.995 1.0 0.919 1.0 0.992

Trained using type B data (SNR= 2)
2 0.914 1.0 0.991 0.977 0.690 1.0
3 1.0 0.999 1.0 0.977 0.998 0.999
4 1.0 0.999 1.0 0.977 1.0 0.999

Trained using type C data (SNR= 2)
2 0.996 0.992 0.999 0.902 0.999 0.979
3 1.0 0.990 1.0 0.910 1.0 0.982
4 1.0 0.991 1.0 0.901 1.0 0.982

Trained using type A, B, C data combined (SNR= 2)
2 0.988 0.998 0.998 0.942 0.962 0.994
3 1.0 0.997 1.0 0.939 1.0 0.995
4 1.0 0.998 1.0 0.940 1.0 0.993

Fig. 12. Example of the top-five features that were selected by AdaBoost in the case of the Type A training data.

with other subwindow sizes in the range of 8-12 pixels showedno significant difference in performance. For the
detection of elongated objects, the subwindow size was fixed to 13×13 pixels, which consequently gives 2366
features. Even though the characteristic size of the elongated objects is doubled (compared to the round objects),
the use of larger subwindow sizes, for example 21×21 pixels, degraded the AdaBoost performance. With the high
spot density, the larger subwindows included the neighboring objects (equally frequently in the positive and negative
training sets) and caused the problem with defining a clear decision boundary for these ML approach.

For the training stage, separate sets of synthetic images were created, and 4096 positive and 4096 negative
samples (10×10 pixels) were extracted from each image type (A, B and C) containing round objects. The same
training procedure was repeated for elongated objects. Four types of training were performed: using the samples
from each image type separately, and using the combined training dataset, where 4095 samples were selected (in
total) from type A, B and C images in equal proportions. The training was based on SNR= 2 (the worst case
considered in this paper). Training using higher-SNR imagesresulted in worse performance on lower-SNR images,
as the number of features selected by AdaBoost became too small. Each trained classifier was applied separately
to the synthetically created test images of all three types,with SNR in the range 2–4, and the classification results
(sensitivity (TPR) and specificity) for 4096 positive and 4096 negative patches, extracted from these test images,
are given in Table IX. In the experiments, the number of AdaBoost runs,NAB, which corresponds to the number
of features selected and used by the classifier, was fixed to 5. Thetop-five features selected during the training are
shown in Fig. 12.

The behavior of the sensitivity and specificity was also investigated depending on the number of Haar-like
features,NAB, that are used for the classification. For this analysis, combined training (using the data of type A,
B, and C) was performed, and the classifier was separately applied to the test data of each type. The results for
different values ofNAB are shown in Table X, where the last three rows also show the performance of the classifier
trained using a reduced training set of 1002 combined samples (334 of each type).

In all these performance evaluation experiments, the classifier was applied to image patches extracted from the
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TABLE X
SENSITIVITY AND SPECIFICITY OFADABOOST CLASSIFICATION DEPENDING ON THE NUMBER OF RUNS.

Image Type A Image Type B Image Type C
SNR TPR Spec. TPR Spec. TPR Spec.

NAB = 5

2 0.988 0.998 0.998 0.942 0.962 0.994
3 1.0 0.997 1.0 0.939 1.0 0.995
4 1.0 0.998 1.0 0.940 1.0 0.993

NAB = 10

2 0.991 0.998 0.999 0.946 0.965 0.994
3 1.0 0.998 1.0 0.944 1.0 0.996
4 1.0 0.998 1.0 0.944 1.0 0.993

NAB = 20

2 0.991 0.999 0.999 0.953 0.965 0.994
3 1.0 0.998 1.0 0.957 1.0 0.996
4 1.0 0.998 1.0 0.954 1.0 0.996

NAB = 5 and 1002 training samples
2 0.991 0.999 0.999 0.953 0.965 0.994
3 1.0 0.998 1.0 0.957 1.0 0.996
4 1.0 0.998 1.0 0.954 1.0 0.996
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Fig. 13. FROC curves for the AdaBoost detector in the case of the round(a) and elongated (b) objects, depending on the value of the size
thresholdvd, at SNR= 2, and withNAB = 50.

positive and negative test images. In order to evaluate the performance of actualdetectionusing this machine
learning approach, we applied the classifier to each pixel in the images (based on a window of size 10×10-pixels
around the pixel). The resulting classification map is a new image of the same size as the original, with each pixel
being either “1” (if the corresponding image pixel was classified as belonging to an object) or “0” (if the pixel
was classified as background). Before labeling the connectedcomponents and extracting the number of detected
objects and their positions, the map was median-filtered witha round mask of radius 2 pixels in order to suppress
too small clusters, and then a closing operation was appliedwith the 3×3 structuring element to fill small holes.
The FROC curves for this detection procedure depending on the size thresholdvd of the clusters in the binary
classification mapCB in the case of round and elongated objects are shown in Fig. 13.The behavior of TPR and
FPR∗ depending on the number of features,NAB, used in the detection is shown in Table XI. The parameters of
the detection were optimized in order to get FPR∗ = 0.01 when NAB = 50. After that, the number of features
NAB was reduced (see Table XI) and the behavior of the performance measures studied. The optimal parameter
values for the size thresholdvd are shown in Table XII.

10) Fisher Discriminant Analysis:The classifier in this case (abbreviated as FDA) was trained using the same
training data as in the case of AdaBoost. Using the labeled10 × 10 image patches (for the round objects) and
13×13 patches (for the elongated objects), the kernelsw for both types of objects were obtained (see Fig. 18(d,e)).
Then, the sliding subwindow was used in order to classify every pixel in the imageI. The method produces the
binary classification mapCB directly, so the performance of the detector was studied depending on the threshold
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TABLE XI
DETECTION PERFORMANCE OFADABOOST DEPENDING ON THE NUMBER OF SELECTED FEATURES, NAB , WITH TRAINING BASED ON

THE COMBINED IMAGE DATA (TYPE A, B, AND C) AT SNR= 2.

Image Type A Image Type B Image Type C
NAB TPR FPR∗ TPR FPR∗ TPR FPR∗

5 0.995 0.013 0.912 0.037 0.806 0.019
10 0.996 0.014 0.929 0.041 0.818 0.022
20 0.994 0.013 0.921 0.022 0.789 0.019
50 0.994 0.011 0.926 0.016 0.810 0.018

TABLE XII
OPTIMAL SIZE THRESHOLDING PARAMETERS AND CORRESPONDING PERFORMANCE FORADABOOST AT SNR= 2.

Image Round Objects Elongated Objects
Type v∗

d TPR∗ ST SF v∗

d TPR∗ ST SF

A 3 .99 10
−3

10
−3 2 .99 10

−5 .10
B 31 .94 .01 10

−3 18 .99 10
−5

10
−3

C 30 .94 .01 10
−3 12 .99 10

−5
10

−3
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Fig. 14. FROC curves for the FDA detector in the case of the round (a) and elongated (b) objects, depending on the values of the size
thresholdvd and the type of image data, at SNR= 2.

TABLE XIII
OPTIMAL SIZE THRESHOLDING PARAMETERS AND CORRESPONDING PERFORMANCE FOR THEFDA DETECTOR ATSNR= 2.

Image Round Objects Elongated Objects
Type v∗

d TPR∗ ST SF v∗

d TPR∗ ST SF

A 4.6 .99 10
−5 .01 3.0 .99 10

−5
10

−2

B 8.8 .99 10
−3 .01 5.6 .99 10

−5
10

−2

C 9.8 .96 10
−2 .01 12.4 .99 10

−5
10

−3

vd (which defines the size of the clusters of connected pixels inCB), and not the signal thresholdld. The results
are shown in Fig. 14 and the optimal parameter values are presented in Table XIII. The size threshold, which in
principle is an integer number (the minimum number of pixelsa cluster inCB should have to be considered an
object), is real-valued in Table XIII, due to the interpolation in order to obtain the valuev∗d for which FPR∗ = 0.01.

11) Comparison of All Detectors:The performance of all the described detectors was compared at the level
of FPR∗ = 0.01 for the different image data at SNR= 2. The results are shown in Fig. 15. From the sensitivity
analyses (see Tables II-VIII, XII, XIII), which was based onthe comparison of∆TPR and∆FPR around the
optimal signal thresholds for different detectors and datatypes, revealed that FDA and AB are superior to all other
detectors and show the highest TPR* and the lowest sensitivityfor all image data (Type A, B, and C, SNR= 2).
WMP showed the worst performance and additionally showed high sensitivity to parameter changes, together with
the TH detector, which showed high performance only for Type Aand B data. The IFDs are quite sensitive to
parameter changes and do not have sufficiently high TPR in the case of the elongated objects. MSVST, HD, SEF,
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Fig. 15. Maximum detection probabilities (TPR∗) at the level FPR∗ = 0.01 for all the detectors applied to all three types of synthetic
image data at SNR= 2 in the case of the round (top) and elongated (bottom) objects.

and MTH demonstrate high TPR* and low parameter sensitivity, but none of these four detectors is better than
the other three forall types of data. Finally we observed that the difference in performance between the methods
decreases when the SNR of the image data increases, and we found that for SNR> 5 all methods perform equally
well (TPR = 1).

To further investigate the influence of object appearance on the performance of the described detectors, addition-
ally a set of sixteen512 × 512 synthetic images was created with the nonuniform background of Type C images
and containing 4096 objects of different sizes, specified by (σmin, σmax) (see Fig. 16(a), (b)). The size parameters
(σmin, σmax) were independently sampled from the uniform distributionin the range of75 − 250 nm, where the
smallest value approximately corresponded to the smallestPSF-like objects in the real images. All the detectors
were applied to this type of images for different SNR levels, and for SNR= 2 the results are shown in Fig. 16(d).
Additionally, all the detectors were applied to the images prefiltered with the patch-based denoising framework
described in Section III-A3 (see Fig. 16(c)) and the TPR* at the level of FPR*=0.01 is also presented in Fig. 16(d).
In the case of the TH and MTH detectors, the Gaussian smoothing (Step 1) was substituted with the patch-based
denoising, improving the detection performance. The AB and FDA were trained using the combined training data
sets described in Section IV-A9. For the ML approaches, the performance was slightly higher (not shown in the
plot) when the methods were trained using only the training samples from the same type of data (the synthetic
images containing objects of different sizes). These results confirm that AB and FDA perform best overall, closely
followed by MSVST, HD, SEF, and MTH.

B. Evaluation on Real Image Data

1) Image Data: The described detection methods were also tested on real time-lapse fluorescence microscopy
image data from several biological studies. The main goal of these studies was to estimate important kinematic



IEEE TRANSACTIONS ON MEDICAL IMAGING 24

(a) (b) (c)

WMP MSVST TH SEF MTH HD IFD
1

IFD
2

AB FDA
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
P
R

*

Round Objects Elongated Objects Mixed Sizes
Mixed Sizes with Patch-based Prefiltering

(d)

Fig. 16. Example of synthetic images containing objects of different sizesat SNR = 7 (a) and SNR = 2 (b). Example (c) of applying the
patch-based denoising scheme to the images with SNR = 2, (3 × 3 mask, 6 iterations, for the parameter description see [52]). Maximum
detection probabilities (TPR∗) at the level FPR∗ = 0.01 for all the detectors applied to the image data at SNR= 2 in the case of the round,
elongated, mixed objects (d).
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Fig. 17. Examples of real fluorescence microscopy images (a, b, and c, compare Fig. 1) with manual spot annotation (white squares) by
an expert biologist serving as ground truth. The corresponding FROCs (d, e, and f) of all the detection methods (with dependence on the
same free parameters as in the experiments on the synthetic image data) are shown below the images (a, b, and c). In these plots, IFD
represents the IFD1 detector, which in the experiments on synthetic image data performed eithersimilar to or better than the IFD2 detector
(see Fig. 15).

parameters of subcellular particles in eukaryotic cells. To understand the molecular mechanisms underlying particle
motility and distribution, it is essential to characterizein detail different dynamic properties, such as velocities,
run lengths, and frequencies of pausing and switching of cytoskeletal tracks. This requires accurate tracking of
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(a) (b) (c) (d) (e) (f) (g)

Fig. 18. The FDA kernels for the MT data (a and b), vesicles (c), and theround and elongated objects from the synthetic data (d and e),
together with the kernels for mixed size synthetic image data without and with thepatch-based prefiltering (f and g).

individual particles, for which a wide variety of automatictracking algorithms can be found in the recent literature
[14], [20], [21], [28], [30], [68]–[73]. In turn, these algorithms generally depend heavily on the performance of the
spot detection stage, which forms an integral part of any tracking algorithm (see Section I).

Two types of representative image data sets were selected for these experiments. The first showed moving
microtubule (MT) plus-ends, which have a round or elongated appearance. MTs are hollow tubes (diameter of
25 nm) assembled fromα/β−tubulin heterodimers, which frequently switch between growth and shrinkage [74],
[75]. The MT network is highly regulated and is essential to many cellular processes. In the experiments, growing
ends of MTs were tagged with so-called plus-end-tracking proteins (+TIP), resulting in typical fluorescent “comet-
like” dashes in the image sequences. In our study, COS-1 cellswere cultured and transfected with GFP-tagged
proteins [75]. A Zeiss LSM-510 confocal laser scanning microscope was used to acquire images of GFP-TIP
movements at a rate of 1 frame per 1 or 2 seconds. The image sequences consisted of 30–50 frames of512× 512
pixels of size75 × 75 nm2 (see Fig. 17(a,b)).

The second type of image data showed a variety of GFP-labeled vesicles (Rab6 and peroxisomes), which have
a round shape in the images. In this case, HeLa cells and PEX3-GFP fusion were used [76]. The HeLa cell line
is the oldest cell line and is widely used for many different studies. Many variants of the HeLa cell line exist,
including HeLa-R, with a so-called “round” phenotype, and HeLa-L, with a “long” phenotype. HeLa-L cells were
used to study the dynamic properties of vesicles, and HeLa-R cells to study microtubule dynamics, microtubule and
cell cortex crosstalk, and exocytosis [76]. Images were acquired on a Zeiss Axiovert 200M inverted microscope
at a rate of 0.83 frames per second. The image sequences consisted of 100 frames of1344 × 1024 pixels of size
64 × 64 nm2 (see Fig. 17(c)).

2) Experiments and Results:For the experiments on real image data, the parameters of each detection method
(except the thresholdsld andvd) were fixed to the same values as in the case of the experiments on synthetic data.
Since the ground truth was not available for the real data, theresults of the detection were analyzed by expert
visual inspection and in comparison with manual analysis using MTrackJ [77].

The FROC plots for all the detection methods applied to two illustrative image data sets showing MTs (each
image containing≈ 80–100 spots at SNR≈ 2–4) and one data set showing vesicles (containing≈ 250 spots at SNR
≈ 3–8) are shown in Fig. 17. For the latter data set, all detection methods performed reasonably well, including the
WMP detector, which performed notably worse on the MT data. In all cases, the two ML detectors (FDA and AB)
and two unsupervised detector (MSVST and HD) showed the best overall performance. For visual comparison, the
kernels obtained by FDA for the three mentioned real image data sets, as well as for the two types of synthetic
data sets are shown in Fig. 18, where, for example, Fig 18(c) depicts the fact that the vesicle appearance in our
images (see Fig. 17(c)) is more diverse compared to the microtubule data (Fig. 17(a, b)).

As an example, the results of all methods applied to an MT dataset with SNR≈ 2 are shown in Fig. 19. Manual
annotation was extremely laborious and tedious in this case: visual comparison of several neighboring time-frames
in the image sequence was necessary in order to establish object presence. Based on visual inspection of the results,
it was found that the HD detector yielded the largest number of TPs and the smallest number of FPs. Here, in order
to test the robustness of the ML approaches, the training wasdone using positive and negative samples obtained
from another dataset (see Fig. 1(b)) with SNR≈ 2–3. The results of this experiment imply that FDA is more
sensitive to the training data: if the training is done usingimage data with different imaging conditions (SNR), the
performance of the classifier can degrade. The AdaBoost algorithm, on the other hand, is less sensitive.

V. D ISCUSSION ANDCONCLUSIONS

In this paper we have evaluated the performance of seven unsupervised and two supervised detection methods
that are frequently used in practice for the detection of small spots in fluorescence microscopy images. It was
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Fig. 19. Results of applying all the described detection methods to real fluorescence microscopy image data showing GFP-TIP-labeled
MTs at SNR≈ 2. The HD detector yielded the largest number of TPs and the smallest number of FPs. Similar to Fig. 17, IFD represents
the IFD1 detector, which performed either similar to or better than the IFD2 detector.

shown that all of the described methods follow a “three-step” signal processing procedure, but implement each
of these steps in a specific way. In order to build an accurate and robust detector for a particular application, a
careful selection of the algorithms for each of the steps is necessary. The results from experiments on synthetic
images as well as real image data from two biological studiesindicated that no detector outperforms all others
in all considered situations. Overall, the supervised (machine learning) methods performed better on the synthetic
images as well as on the real image data, but the differences in the performance were not large compared to some
of the unsupervised methods.

In order to study the influence of small changes in the parameter settings of the detection methods, a sensitivity
analysis was carried out by computing the resulting rate of change in TPR (the true-positive ratio) and FPR (the
false-positive ratio) around the empirically determined optimal signal threshold, for two types of objects (round
and elongated). From the experiments on the synthetic imagesat very low SNR (≈ 2), we found that the AB
(AdaBoost) and the FDA (Fisher discriminant analysis) detectors are superior to all other detectors, in that they
show the highest TPR (at very low FPR) and the lowest sensitivity to parameter changes, for all types of image
data considered: uniform background (Type A), background gradient (Type B), and cluttered background structures
(Type C). Of all the unsupervised detectors, the WMP (wavelet multiscale product) detector showed the worst
overall performance and, additionally, high sensitivity to parameter changes. Similarly, the TH (top-hat based)
detector showed high performance only for Type A and Type B data. The MSVST (multiscale variance-stabilizing
transform), HD (h-dome), MTH (morphological top-hat), and SEF (spot-enhancingfilter) based detectors showed
high TPR and low parameter sensitivity, but none of them was better than the other two for all data types. Both
variants of IFD (the image-feature based detector) were quite sensitive to parameter changes and did not show high
TPR in the detection of elongated objects. Finally, we also observed from these experiments that for SNR> 3, the
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difference in performance of all the detectors rapidly decreases.
Additional experiments with synthetic data containing objects of different sizes (starting from the smallest, PSF-

shaped ones) and different shapes (round and elongated) in the same image for several SNR levels confirmed
the above results. For some methods, an increase in TPR was observed, which can be explained by the fact that
the average size of the objects in the images was larger compared to the images containing only round or only
elongated objects. Our evaluation study also showed that proper noise reduction techniques, such as patch-based
prefiltering, can improve the detector performance. This quite intuitive result is due to the fact that nonlinear patch-
based denoising increases the SNR much better than linear convolution based filters (Gaussian or LoG). However,
applying denoising schemes without taking into account theimage characteristics and object appearance, may also
cause a degradation of detection performance, as was seen for the MSVST, MTH, and HD detectors. Initially,
these methods use linear prefiltering tuned to the appearanceof the objects. Patch-based denoising is a nonlinear
discontinuity preserving technique, where objects, together with other possible noisy structures of any shape, are
equally considered as “discontinuities” and therefore preserved or even enhanced. One should also keep in mind that
increasing the SNR with advanced denoising techniques does not mean that all objects will be preserved. Depending
on the realization of the noise process in the image, especially for very low SNRs, the object appearance can be
corrupted by noise to the extent that denoising approaches would only worsen the situation, by smearing objects
into the background. This confirms once again that all three steps should be carefully designed depending on the
application.

From the experiments on real fluorescence microscopy image data, it was confirmed that the actual performance
of the detection methods depends on the application. For themicrotubule data, which contained round or elongated
objects of almost identical sizes, we arrived at the same conclusions as in the case of the synthetic image data.
For the vesicle data, however, the ranking of the detectors was found to be slightly different. These images have
a higher SNR (≈ 3–8) but contain spots of varying sizes. In this case, the detection methods that have parameters
that explicitly relate to spot size, such as the TH and MTH detectors, showed quite poor performance. Once their
parameters are set, these detectors expect spots to be of similar size. Similarly, the image-feature based IFD detector
works well only when all the spots have very similar appearance in terms of the features considered. On the other
hand, detectors such as MSVST, SEF, and HD do not model the spots exactly, and because of that allow some
more variation in the appearance of spots. Moreover, the WMPdetector, which also does not assume any specific
object shape, demonstrated much better performance for such datasets.

Based on our extensive experiments, we conclude that when a detector with overall good performance is needed,
the supervised AB or FDA detectors or the unsupervised MSVST or HD detectors are to be preferred. The main
disadvantage of the supervised methods is that they requirea training stage, which involves the extraction of positive
and negative samples beforehand. As was shown, the trainingshould not be done using only clearly visible spots
in image regions with high local SNRs. On the contrary, in order to achieve good classification performance, it
must also include a lot of hardly visible objects. Such manualannotation is extremely tedious, time consuming,
and observer dependent. Spots may be more or less identical within one data set, but may differ in appearance
from one data set to another, due to the different experimental and imaging conditions. Because of that, one would
have to repeat the training (or correct it) when new data setsarrive. The preparation of training samples requires
manual annotation of thousands of objects in order to achieve sufficient discriminating power, which itself is a
manual detection that biologists would be happy to use, without considering further automated analysis. Taking
this into account, the unsupervised MSVST or HD detectors are much easier to use in practice. When the SNR is
sufficiently high (> 5 as a rule of thumb), the other unsupervised detectors perform just as well, and require only
minimal adjustment of their parameters to the specific application.

All the detection algorithms were implemented in the Java programming language (Sun Microsystems Inc.,
Santa Clara, CA) as plugins for ImageJ (National Institutes of Health, Bethesda, MD [78]), a public domain and
platform independent image processing program used abundantly in biomedical image analysis [79] and executed
on a regular PC (a Core 2 Duo with 2.66 GHz CPU and 3 GB of RAM) usingthe Java Virtual Machine version
1.6. The execution time for the WMP, TH, SEF, MTH, IFD1, IFD2 and FDA is approximately the same and for
one512 × 512 image containing 256 objects is 0.2-0.4 sec. The corresponding time for the MSVST, HD and AB
is approximately 1-1.2 sec. The patch-based prefiltering of one such image takes approximately 60-80 sec. The
learning step using 819213× 13 positive and negative image patches for the FDA takes approximately 3 sec. and
one run of the AB (selection of one top feature) takes approximately 300 sec. We expect that faster execution times
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are still possible, after further optimization of the code.In the near future the algorithms will be integrated into a
user-friendly software tool which will be made publically available.

Finally, in our evaluation study we have not considered methods that additionally use temporal information
and that were designed specifically for object detection in 2-D or 3-D time-lapse images [52]. Such methods are
becoming more popular and can potentially outperform purely-spatial detectors, by exploiting information from
neighboring image frames in the sequence. These methods are applicable only to image sequences and can be
categorized as in-between the considered spatial detectors on the one hand and fully integrated detection and
tracking solutions [20], [30], [70] on the other. While useful for tracking, they are not necessarily the best option
in biological applications where object detection is required in single images, or in image sequence where the
successive frames are too separated in time. The present evaluation study of frequently used spatial detectors is
valuable for many practical applications and offers a baseline for assessing the relative performance of future spot
detectors.
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