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Abstract

Studying intracellular dynamics is of fundamental importance for understanding healthy life at the

molecular level and for developing drugs to target disease processes. One of the key technologies to

enable this research is the automated tracking and motion analysis of these objects in microscopy image

sequences. To make better use of the spatiotemporal information than common frame-by-frame tracking

methods, two alternative approaches have recently been proposed, based on either Bayesian estimation

or space-time segmentation. In this paper, we propose to combine the power of both approaches,

and develop a new probabilistic method to segment the tracesof the moving objects in kymograph

representations of the image data. It is based on variable-rate particle filtering and uses multiscale trend

analysis of the extracted traces to estimate the relevant kinematic parameters. Experiments on realistic

synthetically generated images as well as on real biological image data demonstrate the improved

potential of the new method for the analysis of microtubule dynamics in vitro.

Index Terms

Bayesian estimation, variable-rate particle filters, multiscale trend analysis, motion analysis, bio-

logical microscopy, microtubule dynamics.

I. I NTRODUCTION

Motion analysis of subcellular objects plays a major role inunderstanding fundamental dynamical

processes occurring in biological cells. Since many diseases originate from a disturbance or failure
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of one or more of these processes, their study is of interest not only to life scientists, but also to

pharmaceutical companies in the attempt to develop adequate drugs. Even though many intracellular

interaction mechanisms are well understood these days, many questions still remain unanswered. In

some cases, where the analysis in living cells (in cultures or in vivo) is confounded by other intracellular

processes, it makes sense to study the objects of interestin vitro, where the influence of other structures

or processes is removed, reduced, or known [1], [2].

Intracellular dynamics is usually visualized using advanced fluorescence microscopy imaging tech-

niques, including stimulated emission and depletion (STED) and total internal reflection fluorescence

(TIRF) microscopy, where the objects of interest are labeled with fluorescent proteins [3]. Alternatively,

non-fluorescence based techniques, such as phase contrast (PC) or differential interference contrast

(DIC) microscopy can sometimes be used, which do not requirelabeling [4], [5]. In either case, the

optical resolution of the microscope is much lower (on the order of 100 nm) than the size of the objects

of interest (on the order of nanometers), causing the latterto be imaged as blurred spots (without sharp

boundaries) due to diffraction. The quality of the images is further reduced by high measurement noise

levels [3], [5]. Both types of distortions contribute to theambiguity of the data, making automated

quantitative image analysis an extremely difficult task.

In time-lapse microscopy, where hundreds to thousands of 2Dor 3D images are acquired sequentially

in time, the main task is to track the objects of interest (proteins, vesicles, microtubules, etc.) and

compute relevant motion parameters from the extracted trajectories. In practice, manual tracking is

labor intensive and poorly reproducible, and only a small fraction of the data can be analyzed this way.

The vast majority of automatic tracking methods [6]–[12] developed in this field consist of two stages:

1) detectionof objects of interest (independently in each frame), and 2)linking of detected objects

from frame to frame (solving the correspondence problem). Since the methods employed for the first

stage operate on data with low signal-to-noise ratio (SNR), the linking procedure in the second stage

is faced with either many false positives (noise classified asobjects) or false negatives (misdetection

of actually present objects).

Contrary to these two-stage tracking methods, which typically use only very few neighboring frames

to address the correspondence problem, methods that make better use of the available temporal in-

formation usually show better results. Such trackers are either built within a Bayesian estimation

framework [13], [14], which in any frame uses all available temporal information up to that frame, or

they consider the 2D+t or 3D+t image data as one spatiotemporal 3D or 4D image, respectively, and

translate the estimation of trajectories into a segmentation of spatiotemporal structures [15], [16].

In this paper, we propose to combine the power of the latter two approaches, and develop a

variable-rate particle filtering method that implements theBayesian estimation framework for tracing

spatiotemporal structures formed by transforming the original time-lapse microscopy image data into a
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special type of spatiotemporal representation: kymographs [17]–[21]. This combined approach, which

to the best of our knowledge has not been explored before, results in more accurate extraction of the

spatiotemporal structures (edge-like image structures inour case) compared to particle filtering applied

directly to the image sequences on a per-frame basis [13].

The paper is organized as follows. In Section II, we describe the biological application considered

in this paper and the proposed methods to model, acquire, transform, preprocess, and analyze the

image data. In Section III, we present experimental results of applying our method to synthetic image

sequences, for which ground truth was available, and to realDIC microscopy image data of microtubule

dynamics. A concluding discussion of the main findings is given in Section IV.

II. M ETHODS

A. In Vitro Microtubule Dynamics Model

Microtubules (MTs) are polymers of tubulin, which assemble into hollow tubes (diameter∼25 nm)

in the presence of guanosine triphosphate (GTP), bothin vivo and in vitro [22], [23]. In vivo, MTs

are responsible for the support and shape of the cell and playa major role in several intracellular

processes such as cell division, internal cell organization, and intracellular transport. MT dynamics

(also referred to as dynamic instability) is highly regulated, both spatially and temporally, by a wide

family of microtubule-associated proteins (MAPs) [24]. To understand the specific interactions between

regulatory factors and microtubules is of great interest tobiologists. Misregulation of MT dynamics, for

example, can lead to erroneous mitosis, which is a characteristic feature in neurodegenerative diseases.

Microtubule dynamic instability is a stochastic process ofswitching between growth and shrinkage

stages, regulated by MAPs [25]. The growth velocity,ν+, depends on soluble tubulin concentration

available for polymerization and GTP-tubulin association and dissociation rates. The shrinkage velocity,

ν−, which is usually much higher than the growth velocity, is independent of tubulin concentration

and is characterized only by the dissociation rate of guanosine diphosphate (GDP) tubulin from the

depolymerizing end. The growth velocityin vivo can be up to 10 times faster thanin vitro. Two other

important events that characterize dynamic instability are rescue(switching from shrinkage to growth)

andcatastrophe(switching from growth to shrinkage) [25]. In practice, theanalysis of MT dynamics

includes estimation ofν+, ν−, and the rescue and catastrophe frequencies,fres and fcat. The rescue

rate in vitro is very low unless specific rescue factors are added to the assay and might be difficult to

estimate reliably [2].

Recent studies reveal a special class of MAPs, plus-end-tracking proteins (+TIPs), that are able to

accumulate at MT growing ends [24], [26]–[28]. The mechanisms by which +TIPs recognize MT ends

have attracted much attention and several explanations have been proposed [24], [27], [29]. One way

to understand the mechanism employed by individual +TIPs and the molecular mechanisms underlying
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Fig. 1. Dynamics model describing microtubule behaviorin vitro.

their functions is by measuring the distribution and displacement of +TIPs in time. However, due to lack

of robust and accurate automatic methods, the manual analysis usually is a labor intensive procedure

which very likely leads to user bias and loss of important information. In the case of experiments in

living cells it is extremely hard to decouple the effect of other regulators while studying +TIPs influence

on MT dynamics. The advantage ofin vitro investigation is the minimal environment in which the

influence of various +TIPs can be dissected individually. Recent in vitro studies start to reveal the

mechanisms of +TIPs end-tracking and the regulation of MT dynamics by individual +TIPs [30]. This

can potentially lead to combining multiple +TIPs in order to reconstitute thein vivo MT dynamics and

observe the collective effect of +TIPs.

The stochastic behavior of the MT tip can be modeled using a dynamical system with three states

(Fig. 1): G (growth), S (shrinkage), andS0 (no dynamic activity). Each state is characterized by a

velocity parameter̃ν ∈ {ν+, ν−, ν0} and a duration time interval̃τ ∈ {τ+, τ−, τ0}, describing the

duration of the corresponding stage. The following state transitions are allowed:S0 → G (the MT starts

to grow), G → S (catastrophe),S → G (rescue), andS → S0 (the MT is completely disassembled).

At each time point the MT can “stay” only in one of the states and for a period of time no longer than

the corresponding̃τ for that state. In our simulations, the time and velocity parameters are generated

randomly (Section III-A), and because of that it is allowed to“leave” the stateS sooner thanτ− if

the MT is completely disassembled in shorter time. If after time τ− the MT was not disassembled

completely (did not reach stateS0), a rescue occurs (S → G) and the MT switches to growing. A

similar three-stage model of MT dynamics can be designed forthe in vivo situation. In this case, state

So should be replaced with a state that corresponds to a “pause”event [22], and all the transitions

(arrows in Fig. 1) should be bidirectional.

B. Imaging Technique and Kymographs

In our studies, the dynamic behavior of MTs is imaged using DICmicroscopy [31], which is

effectively used for biological specimens that cannot be visualized with sufficient contrast using bright-
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Fig. 2. Example of a DIC microscopy image. Microtubule nucleation initiates from stable tubulin “seeds”. In the experiments,

“observation lines” are defined along MT bodies to construct kymographs.

field microscopy. The resulting images (see Fig. 2 for an example) are similar to those obtained with

phase-contrast microscopy and depict objects as black/white shadows on a gray background with good

resolution and clarity. The advantages of DIC over fluorescence microscopy is that the samples do not

have to be stained. This also eliminates the possible influenceof fluorescent proteins on dynamical

processes being studied. The main limitation of this imagingtechnique is its requirement for a thin and

transparent sample of fairly similar refractive index to its surroundings.

Automatic analysis of MT behaviorin vitro using time-lapse DIC microscopy images is a complicated

task. The goal is to follow (track) the fast-growing (so called “plus”) end of each MT so as to obtain 2D

paths in the image plane, from which all the parameters of interest (velocity and frequency estimates)

can be computed. One of the main problems is that due to the nonlinear image formation process in DIC

microscopy, the object appearance (and especially the MT tip) depends on the imaging conditions (for

example, the relative angle between the sample and the microscope polarization prism) and cannot be

easily modeled by appearance models, as in the case of fluorescence microscopy imaging. Additionally,

the real object location is further obscured by diffraction, modeled by the point-spread function (PSF)

of the microscope.

Another issue that requires careful consideration is the temporal sampling rate. In our experiments,

images are acquired at a rate of one per second, which is quitehigh for imaging the microtubule growth

velocitiesin vitro (30–40 nm per second). The shrinkage, on the other hand, happens with much higher

velocities, and with the mentioned sampling rate this process is imaged in only 3–10 image frames

(the time between the catastrophe event and arriving at state S0). On average, microtubule growth is

usually observed during 30–100 frames, and in this case the process is highly oversampled. It is not

possible simply to lower the sampling rate, as this causes undersampling of the shrinkage processes.
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Fig. 3. Example of a kymograph obtained from the DIC microscopy images, showing the dynamics of both microtubule

ends.

This problem arises due to the fact that we are imaging two processes (growth and shrinkage), which

may occur simultaneously (for different microtubules) on timescales that differ approximately by a

factor of ten, with one constant sampling rate. The relatively high sampling rate is both a blessing and

a curse. It is a blessing because it allows one to observe the motion in more detail and possibly detect

rare and extraordinary movements that would otherwise go unnoticed. It is also a curse, however, as

the growth and shrinkage velocities are usually such that the change in MT length from one frame to

the next is (much) less than one pixel, even if thespatial sampling is done at the Nyquist rate. This is

on the same order as the positional estimation errors made bymanual or automatic approaches [13]. As

a result, instant velocity estimates (ν+ or ν−) computed as the ratio of positional change over elapsed

time between two consecutive frames, are doomed to be highlyinaccurate.

In order to exploit all image data and at the same time obtain more accurate results, we abandon

the idea of frame-by-frame tracking of objects directly in the original data, and we propose to base the

estimation of motion parameters on a transformation of the data that is more amenable to multiscale

analysis. Specifically, we propose to use a kymograph representation [17], [21] (also called a kymoimage

in this paper) for each MT. It is constructed by defining (see Section III-A5) an “observation line”L

(Fig. 2) in the original image along the MT body. The length ofL should approximately equal the

maximum expected length of MTs in the sample. Image intensityvalues are then sampled equidistantly

along L, yielding a vector of “measurements” at timet, Jt = {Jt(j) : j = 1, . . . , Y }, where Y

is the number of samples for the selected MT in every image frame. In practice, to increase the

SNR, the measurementsJt(j) are obtained by averaging pixel values in the vicinity ofj, along a line

perpendicular toL. The resulting kymoimage (see Fig. 3 for an example),I(t, y) = {Jt : t = 1, . . . , T},

is the collection of measurement vectors, where every column t contains the measurementsJt as pixel

values, andT is the number of frames in the image sequence. In our experiments, MT nucleation

from stable tubulin oligomers was studied [32]. These “seeds” always remain present and cannot be

completely disassembled. In the kymoimages (Fig. 3) they areclearly visible as a bright horizontal

strip.

To estimate the kinematic parameters of interest from the kymoimages, the edge locationy(t) (cor-
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Fig. 4. Application of various edge preserving smoothing methods to our image data (top). The left column shows the results

of smoothing, the middle column depicts the edge information extracted usingGaussian derivatives, and the right column

shows the distribution of intensity values in the smoothed images.

responding to the MT tip) should be accurately extracted (slopes should be preserved). In kymoimages,

the instant velocityν at any timet′ is estimated asν = (dy/dt)t=t′ = tan (ϕ), whereϕ is the angle

between the time axis and the tangent toy(t) at t = t′. As a result, small errors in the angle estimates

may lead to large errors in the velocity estimation, due to the nonlinearity introduced by the tangent

(the closerϕ is to 90 degrees, the larger the errors).

In our method, the analysis is conducted in three subsequentsteps: 1) preprocessing, 2) edge

extraction, and 3) multiscale trend analysis. Step 1 enhances the quality of the image using edge

preserving filtering. Step 2 traces the edges by a particle filtercapable of using multiscale measurements.

Finally, step 3 analyzes the extracted edges by splitting them into relevant parts and performing linear

approximation in order to compute all the necessary parameters. The three steps are described in more

detail in the following subsections.
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C. Edge Preserving Smoothing

The main challenge in estimating the growth velocityν+, shrinkage velocityν−, and the two

transition frequenciesfres andfcat, is to accurately segment the edges in the kymoimages (Fig. 3). Two

main approaches to edge detection are differentiation and model fitting. In practice, differentiation,

being a noise enhancing operation, requires some form of smoothing, which in turn entails the risk

of blurring edge information. Better results may be obtained by the use of nonlinear, edge preserving

filters. Fig. 4 shows the results of applying the most frequently used nonlinear filtering techniques to

our image data: the median filter [33], the maximum homogeneity neighbor (MHN) filter [34], the

bilateral filter [35], the mean-shift filter [36], and anisotropic diffusion [37]. The examples clearly

demonstrate that noise can be reduced to some extent while preserving edge information. However,

they also show that edges may still not be clearly defined in (parts of) the image. Subsequent edge

extraction by means of Gaussian differentiation [38] may result either in detection of noisy background

structures (at small scales), or in too much positional uncertainty (at larger scales), neither of which is

acceptable for accurate slope estimation of the linear parts of the edgey(t).

To overcome the problems caused by differentiation, we propose to use model fitting for edge

detection, using particle filtering (PF) methods. The PF can be exploited to reduce the overload of

fitting the model in every pixel position, by incorporating information about the edge model, the image

noise distribution, and the probability of finding the edge inthe neighborhood of a pixel, by taking

into account the probability of edge existence at neighboring pixels. In this case, the use of edge

preserving prefiltering is still advantageous. The PF mainly replaces the edge extraction part, which in

differentiation based approaches such as Canny’s algorithm [39] is usually based on hard thresholding.

D. Variable-Rate Particle Filtering

The prefiltered kymoimage is an input for the next step, where particle filtering (PF) is performed

to estimate the edge locationy(t). Particle filters [40], [41] implement the concept of Bayesian

estimation, where at each time pointt a system statext is estimated on a basis of previous states, noisy

measurementszt obtained from sensors, and prior knowledge about the underlying process [40]. For

our application, the simplest working implementation of PF can be constructed with the state vectorxt,

which describes the position of the edge in every columnt of the imageI(t, y), and the measurements

zt, which are the intensity values in the corresponding columnt of I(t, y). Prior knowledge about

the system is specified by the dynamics model, which describesthe state transition process, and the

observation model:

xt = ft(xt−1,vt), zt = gt(xt,ut), (1)

whereft and gt are possibly nonlinear functions andvt andut are white noise sources. The choice

of these functions is application specific and is given below.Alternatively, the same state estimation
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problem can be formulated by specifying two distributions,p(xt|xt−1) andp(zt|xt), instead of (1) [40],

[41].

The solution of the state-space problem given by (1) is the posterior probability distribution function

(pdf) p(x0:t|z0:t), wherex0:t = {x0, . . . ,xt} andz0:t = {z0, . . . , zt}, which can be found either exactly

(when ft and gt are linear andvt andut are Gaussian) using the Kalman filter [41] or, in the most

general case, using approximations such as sequential Monte Carlo (MC) methods [40], [42]. In the

latter case, the posterior pdf is approximated with a set ofNs MC samples (referred to as “particles”),

{x(i)
0:t, w

(i)
t }Ns

i=1, as

p(x0:t|z0:t) =

Ns
∑

i=1

w
(i)
t δ(x0:t − x

(i)
0:t), (2)

wherex
(i)
0:t describes one of the possible state sequences (path) andw

(i)
t is the weight indicating the

probability of realization of that path. The solution using PFis given by a recursive procedure that

predicts the state from timet − 1 to t and updates the weights based on newly arrived measurements

zt as

x
(i)
t ∼ p(xt|x(i)

t−1) andw
(i)
t ∝ w

(i)
t−1p(zt|x(i)

t ), (3)

i = 1, . . . , Ns. The minimum mean square error (MMSE) or maximum a posteriori (MAP) estimators

of the state can be easily obtained fromp(x0:t|z0:t) [40].

Commonly, the state sampling rate is determined by the rate at which the measurements arrive. In

the application under consideration, where the MT dynamicsis characterized by prolonged periods of

smoothness (growth and shrinkage stages) with infrequent sharp changes (rescue and catastrophe), it

is possible to obtain a much more parsimonious representation of the MT tip trajectory if the state

sampling rate is adapted to the nature of the data – more statepoints are allocated in the regions of

rapid variation and relatively fewer state points to smoother sections. Unfortunately, this idea cannot be

implemented using the standard PFs because the number of statepoints, which would typically be much

smaller than the number of observations, is random and unknown beforehand. In order to deal with this

randomness, variable-rate particle filtering (VRPF) methods have been proposed recently [43], [44].

The VRPF can be compared to the more conventional interactive multiple models (IMM) approach,

which uses switching between a discrete set of candidate dynamical models [8], [45], but was shown

to outperform IMM in most cases [43]. The VRPF, which was initially proposed for tracking of

highly maneuvering targets [43], is nowadays successfullyapplied in other fields, for example DNA

sequencing [46], but has not been investigated before in microscopy.

Contrary to the standard state-space approach, where the state variablext evolves with time index

t, within the VRPF framework the statexk is defined asxk = (θk, τk), wherek ∈ N is a discrete state

index, τk ∈ R
+ > τk−1 denotes the arrival time for the statek, andθk denotes the vector of variables

necessary to parametrize the object state. In tracking applications, the vectorθk includes variables such
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as position, velocity, heading, etc. For our application, we defineθk = (yk, vk), whereyk is the edge

position at timeτk along the observation lineL, andvk = (dy/dt)t=τk
describes the direction of the

edge att = τk in the imageI(t, y). Similar to the standard PF, it is assumed that the state sequence is

a Markov process, so the successive states are independently generated with increasingk according to

xk ∼ p(xk|xk−1)

= pθ(θk|θk−1, τk, τk−1)pτ (τk|θk−1, τk−1).

(4)

These assumptions and models, apart from the constraintτk > τk−1, are very general, and the specific

choices are dictated by the application under investigation.

The measurementszt, t ∈ N, occur on a regular time grid and in the case of the standard PF can

be uniquely associated with the corresponding statext. In the VRPF framework, the underlying state

process is asynchronous with the measurement process and the rate of arrival of the measurements is

typically (but not necessarily) higher than that of the state process. In order to define the appropriate

observation model (also called the likelihood) in this case, where there may be no corresponding state

variable for the measurement at timet, the data pointszt are assumed to be independent of all other

data points, conditionally upon the neighborhoodNt of statesxNt
= {xk; k ∈ Nt}, that is

zt ∼ p(zt|x0, . . . ,x∞) = p(zt|xNt
). (5)

The neighborhoodNt is constructed as a deterministic function of the time indext and the state

sequencex0:∞ and thus it is a random variable itself (this feature is not present in the standard state-

space models). For practical (computational) reasons, theneighborhoodNt will contain only states

whose timesτk are “close” to the observation timet. Furthermore, the interpolated stateθ̂t = ht(xNt
)

is used, whereht(.) is a deterministic function of the state in the neighborhoodNt. The observation

density (5) is then expressed as

p(zt|xNt
) = p(zt|θ̂t). (6)

In general, the construction of the state process and the neighborhood structure is not unique and for

any given model and different choices will lead to differentalgorithmic trade-offs.

Having all the definitions, we aim to recursively estimate thesequence of variable-rate state points as

new measurements become available. Similar to the standard PF, the VRPF distributionp(x0:N+
t
|z0:t)

can be obtained using the two-step predict-update procedure, whereN+
t denotes the index of the state

variable inNt that has the largest time indexτk. Using the factorization (4), we model the MT dynamics
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with the transition priors

pθ(θk|θk−1, τk, τk−1) =

p(vk|vk−1, yk, yk−1, τk, τk−1) ×

p(yk|vk−1, yk−1, τk, τk−1) =

p(vk|vk−1)δ(yk − yk−1 − vk−1(τk − τk−1),

(7)

pτ (τk|θk−1, τk−1) = U[τk−1+τ0,τk−1+τ1], (8)

whereU[a,b] denotes the uniform distribution in the range[a, b]. Thus, the statesxk for the prediction-

update procedure are sampled as

τk − τk−1 ∼ U[τ0,τ1],

yk = yk−1 + vk−1(τk − τk−1),

vk ∼ p(vk|vk−1).

(9)

The sampling of the new statesxk at time t is performed only for those particlesx(i)
k−1 for which

τ
(i)
k−1 ≤ t, which also reduces the computational load compared to the standard PF implementation.

The crucial point here is to efficiently model the priorp(vk|vk−1) in order to catch the rapid changes

in edge orientation (corresponding to the state transitions described in Section II-A). The underlying

assumption about the MT dynamics in this study is that the MT end can either grow with nearly

constant velocityν+, shrink with nearly constant velocityν−, or show almost no activity (ν0 ≈ 0).

This idealization of reality can be justified by specifying additionally the variances for the velocity

estimates,σ2
ν+ , σ2

ν− , σ2
ν0 , which account for small deviations in the measured velocities from the

average valuesν+, ν−, and ν0. Taking into account three possible types of motion, we definethe

following prior p(vk|vk−1) for the velocity componentvk

p(vk|vk−1) =



















































































































(1 − a)N (vk−1, σ
2
ν+)+

aN (ν−, σ2
ν−),

for vk−1 > Vth

(1 − a)N (vk−1, σ
2
ν−)+

a
(

N (ν+, σ2
ν+) + N (ν0, σ2

ν0)
)

/2

for vk−1 < −Vth

(1 − a)N (vk−1, σ
2
ν+)+

aN (ν+, σ2
ν+)

for |vk−1| < Vth

(10)
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where0 < a < 1 is a weighting parameter that balances the mixture components corresponding to

different types of motion in the transition pdf (in trackingapplications,a would correspond to the

probability of object/target birth). The thresholdVth defines which prior should be used: it defines the

smallest velocity below which all the small changes in the MTlength are considered to belong to state

S0. Since all three types of MT motion are quite different, the performance of the algorithm is not

influenced by possible inaccuracies in setting up the threshold Vth, which can be estimated in advance

from the experimental data. Additionally, the thresholding atVth does not imply that at every time point

we assume that the system evolves according to only one model. Due to the probabilistic nature of

the VRPF, at every time step the posterior pdf describes the probability to find the MT in each of the

three states.

In order to define the likelihoodp(zt|xNt
), we model the edge appearance using an observation model

that we have previously used successfully for tracking of tubular structures in noisy medical images

[47], [48]. The proposed model describes a small perfectly sharp edge and consists of two rectangular

regions,SB and SF (black and white rectangles in Fig. 5, respectively). For each intermediate state

θ̂t = ht(xNt
), which is required for the likelihood computation, the neighborhood is defined asNt =

{k, k − 1; τk−1 ≤ t < τk}. For the MT length changes, linear interpolation between two neighboring

statesθk andθk−1 is used,yt = yk−1 + vk−1(t − τk−1), and the orientation of the rectangles for each

time pointt ∈ [τk−1, τk) is defined by the velocity componentv
(i)
k−1. The regionsSB andSF are defined

as follows

SB(θ̂t) = SB(τk−1, τk, vk−1) =

{(

l−vk−1b√
1+v2

k−1

, lvk−1+b√
1+v2

k−1

)

: l ∈ [0, lv], b ∈ [0, d]

}

, (11)

SF (θ̂t) = SF (τk−1, τk, vk−1) =

{(

l+vk−1b√
1+v2

k−1

, lvk−1−b√
1+v2

k−1

)

: l ∈ [0, lv], b ∈ [0, d]

}

, (12)

wherelv = (τk − τk−1)
√

1 + v2
k−1.

To measure the likelihood of edge existence at some image position with an orientation defined

by the velocity component of the state vector, the average image intensity values,µB and µF , are

computed over the regionsSB andSF . The likelihood is defined as

p(zt|xNt
) ∝







exp
(

µF−µB

γ

)

− 1, µF − µB > 0,

0, µF − µB ≤ 0,
(13)

which defines the pdf of the edge location and favors sharp edges over smoother noisy intensity

transitions. Two model parameters that control the sensitivity to the edge location, the widthd and

the scaling factorγ, should be specified. The lengthlv is automatically defined by the time sampling

functions (8). The variety in the length of the observation model adds a multiscale property to the

analysis. In general, for small values oflv the estimation ofµB andµF is less accurate than for larger

values oflv. Additionally, for largelv the sensitivity of the observation model to the edge orientation
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Fig. 5. The observation model used in the experiments, which comparesthe intensity distribution in two rectangular regions

(black and white strips) and defines the likelihood of edge existence (a). Examples of applying the MTA to the extracted edge

using the VRPF in order to compute the kinematic parameters (b-d).

increases – the likelihood decreases rapidly for small misalignments of the observation model with

the edge. Usually this is a desirable property, because the edge can be located more precisely. The

disadvantage of using only largelv is the disability of the observation model to capture the fast motion

transition stages.

Alternatively, the gradient image can be used as measurements for the VRPF, which represents the

edges computed using the Gaussian derivatives. In this case, the pixel value at some position in the

gradient image is the likelihood for finding the edge. Depending on the scale at which the derivatives

are computed, the slopes of the tangent lines, which are related to the velocity values, can be accurately

estimated, but only in regions having the same motion type. It can be seen from Fig. 4 that in the

regions of the gradient image where catastrophes are present, the edge appearance is distorted – the

transition between the growth and shrinkage is smoothed. This leads to a lowering of the angles of

the tangent lines and, as a result, to underestimation of thevelocity values. Due to the mentioned

nonlinearity, this underestimation is especially severe for the shrinkage velocity.

In order to derive the MMSE estimator, the principle of fixed-lag smoothing is used, which greatly

improves the final results. Here, the MMSE estimate of the stateat timet−∆t is computed using the

posterior as distributionp(x0:N+
t
|z0:t), that is

ŷt−∆t =

Ns
∑

i=1

w
(i)
t ht(xNt−∆t

). (14)

In other words, the estimation of the edge position at timet is delayed until the measurements at time

t + ∆t will be processed and the posterior updated.
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E. Multiscale Trend Analysis

Having the estimated edgêyt after applying the VRPF, we employ multiscale trend analysis(MTA) [49]

in order to automatically compute all the parameters of interest. At this stage of our analysis, it is

necessary to detect all the catastrophe and rescue events and split the live historyŷt into parts of

growth and shrinkage, possibly separated by stages of no activity (stateS0),

The MTA was originally proposed for analysis of trends in timeseries and was recently successfully

applied for analysis of MT transport in melanophores [50]. Compared to methods that try to construct

an optimal piecewise linear approximationLǫ(t) with a minimal number of segments for a given errorǫ,

the MTA builds a multi-level hierarchy of consecutively more detailed piecewise linear approximations

of the analyzed time series at different scales. In general,it is not known beforehand which scale should

be used for the analysis, but some prior knowledge about the application can significantly narrow down

the range of levels that should be analyzed after applying MTA.

The following robust procedure was experimentally found to produce accurate estimates of the

kinematic parameters using MTA. First, MTA decomposition isperformed for a number of levels,

l = {1, . . . , NL}, where NL is a fixed (large) number. Each level in the decomposition can be

represented with a set of nodes{sq}l
q=1 that partition ŷ(t) on the interval[0, T ], where each node

is given by four parameters,(tq0, t
q
1, α

q, ỹq), and describes the linear approximation ofŷ(t) on the

interval [tq0, t
q
1] with slopeαq and intercept̃yq = ŷ(tq0). In our implementation of MTA, the number of

nodes (piecewise linear approximations) at levell is equal tol, and the first level (l = 1) is given by

the base liney = y0, wherey0 = mint ŷ(t). At each levell, the number of catastrophes (local maxima

in the approximation of̂y(t) at that level)Ncat(l), is computed. Due to the nature of the signalŷ(t) and

the way MTA works, for some range of hierarchy levels the number of catastrophes will stay constant

(dNcat/dl = 0). In general, the functionNcat(l) is non-decreasing. By finding the maximum in the

histogram of{Ncat(l) : l = {1, . . . , NL}}, which shows how many levels contain the same number of

catastrophes, we can obtain the number of actual catastrophe eventsN∗
cat. From the set of levels{lj}

that correspond toN∗
cat (satisfyingNcat(lj) = N∗

cat), the median is selected,l∗, as the level for further

parameter computations.

For the selected decomposition level and each catastrophe event Cm, m = {1, . . . , N∗
cat}, which

occurs at timetcm, the two sets of neighboring nodes,{sq : tcm−1 < tq0 < tcm ∩ αq > 0, q = 1, . . . , l∗}
and {sq : tcm < tq1 < tcm+1 ∩ αq < 0, q = 1, . . . , l∗} are analyzed (see Fig. 5(c)), wheretc0 = 0 and

tcN∗

cat+1 = T . On both sides of the local maximumCm, the nodes with the steepest slopeαq are selected

and the linear approximations corresponding to those nodesare extrapolated until the intersection with

y = y0, giving the values̃t0m and t̃1m. The rescue eventRm′ (m′ ∈ N) is detected between two

catastrophesCm andCm+1 if t̃1m > t̃0m+1. In this case, the local minimum in the approximation ofŷ(t)

on the interval[t̃0m+1, t̃
1
m] gives the position of the rescue,tRm′ . Then, the approximation is recomputed
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for ŷ(t) on the intervals[t̃0m, tcm] and[tcm, t̃1m]. If the rescue event is positioned between two catastrophes

Cm and Cm+1, the approximation is recomputed on the interval[tcm, tRm′ ]. The new approximation is

given by a new set of nodesS∗ = {s∗q}
2N∗

cat
q=1 (see Fig. 5(d)), which is used to compute the kinematic

parameters: the total growth and shrinkage times (T+, T−) and the corresponding velocity (ν̂+, ν̂−)

and frequencyfcat andfres estimates:

T+ =
∑

∀s∗

q∈S∗

αq>0

(tq1 − tq0), ν̂+ =
1

T+

∑

∀s∗

q∈S∗

αq>0

(tq1 − tq0)α
q, (15)

T− =
∑

∀s∗

q∈S∗

αq<0

(tq1 − tq0), ν̂− =
1

T−

∑

∀s∗

q∈S∗

αq<0

(tq1 − tq0)α
q, (16)

fcat = N∗
cat/T+, fres = N∗

res/T−, (17)

where N∗
res is the number of rescue events. In practice, the VRPF outputs agood piecewise linear

approximation of the edges, so that the described procedurebased on MTA runs robustly and accurately.

III. E XPERIMENTAL RESULTS

The performance of the proposed VRPF-based method was evaluated using synthetic images (Sec-

tion III-A) and real data from studies of MT dynamicsin vitro (Section III-B) and in comparison with

two other methods that were adapted for edge extraction in kymoimages. The synthetic images, for

which the ground truth was available, were used to explore the accuracy and robustness of the method

depending on the image quality (different SNR levels) and theparameter values that model the MT

dynamics. The experiments on real data enabled us to compare the estimated kinematic parameters

with manual analysis by expert biologists.

A. Evaluation on Synthetic Data

1) Simulation Step:The proposed technique was evaluated using computer generated kymoimages

for different SNRs. The dynamics of the MT tip was simulated according to the model described in

Section II-A (Fig. 1). The values of the model parameters were randomly generated each time the MT

changes its state, by drawing a sample from the Gamma distribution, τ ∼ G(4, 1), and, depending on

which state the MT was entering, the duration times were defined asτ+ = 20τ , τ− = 10τ , τ0 = 10τ .

The corresponding velocity values were drawn from the Gaussian distribution,ν+ ∼ N (0.5, 0.005),

ν− ∼ N (−3, 0.005), ν0 ∼ N (0, 0.05). These model values are representative of practical values.

Having the simulated dynamicsy(t), 0 < t < T (see Fig. 6(a) for an example), we created

corresponding images of sizeT ×Y , whereT = 1000 andY = maxt y(t)+2y0 for several SNR levels.

Padding with a strip of sizeT × y0, y0 = 20, was applied to the top and bottom of the image to avoid

border problems when using the described rectangular observation model (Section II-D). The height
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Fig. 6. Examples of the synthetic images used in the experiments. The simulated MT tip dynamics (a) is used to create the

synthetic images for different SNR levels (b), for which the gradient images (c) are computed using the Gaussian derivatives

at scaleσG = 3.

of the generated images was in the range of 100–150 pixels, which corresponds to 8–12µm (∆t = 1s

and∆y = 80 nm). For allt, the background image intensity was set toIB = 100 if j > y(t) + y0 and

the remainder of the image was set to the foreground intensity IF = IB + σSNR, whereσ = 10. To

create the final noisy image, each pixel value was replaced with a random sample from the distribution

N (I(t, j), σ2). For the chosen values ofIB andσ = 10, this corresponds to the Poisson noise model,

which is dominant in light microscopy images [3]. Examples ofsynthetic images for various SNRs

are shown in Fig. 6(b). Again, for visual comparison, the edgeinformation (the gradient magnitude)

obtained using the Gaussian derivatives at scaleσG = 3 is shown in Fig. 6(c).

The parameters of the described VRPF algorithm were fixed to the following values:ν+ = 0.5,

ν− = −3, σ2
ν0 = 0.5, σ2

ν+ = 0.05, σ2
ν− = 0.5, Vth = 0.15, d = 6, τ0 = 3, τ1 = 10, ∆t = 20,

Ns = 500, NL = 80, a = 0.01, γ = 10. Since the ground truth was available in these experiments, the

accuracy of extracting the edges was evaluated using a traditional quantitative performance measure:

the root mean square error (RMSE) [51]:

RMSE=

√

1

|T |
∑

t∈T

(yt − ŷt)2, (18)

whereyt defines the true position of the edge at timet, ŷt is a MMSE estimate ofyt given by the

VRPF,T is the set of time points for which the edge exists, and|.| denotes the set size operator.

2) Results: The proposed VRPF method was evaluated using 20 syntheticallygenerated images.

Examples of edge extraction for SNR= 0.6 are shown in Fig. 7. In addition to the proposed VRPF, we

also implemented two standard particle filters, denoted PF1 and PF3, in which the state transition process

is synchronous with the measurement process (see Section II-D). PF1 uses only one state transition

model, p(xt|xt−1), which describes nearly-constant velocity motion [13]. Tocapture abrupt changes

in the edges, the variance of the process noise in this transition model had to be made rather large.
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Fig. 7. Sample results of extracting the edge information from the noisy synthetic images using the proposed VRPF and

two types of standard PFs in comparison with the ground truth.

360 380 400 420 440

time [s]

Ground Truth
PF

1

PF
3

VRPF

240 260 280 300 320

time [s]

10

20

30

40

50

60

70

80

90

y 
[p

ix
]

Ground Truth
PF

1

PF
3

VRPF

y(t)y(t)

Fig. 8. More detailed results of extracting the edge information from the noisy synthetic images using the proposed VRPF

and two types of standard PFs in comparison with the ground truth. The plotsare zooms of the first two peaks in Fig. 7 and

show the results combined.

Due to this high variance, the typical overshoots just afterthe catastrophe events (see Fig. 7(b)) highly

corrupted the slope estimates, in particular the estimation of the shrinkage velocity. Additionally, for

the low SNR image data, the filter frequently lost the edge and traced spurious background structures.

PF3 uses the same set of transition models as the VRPF. Contrary tothe observation model used in

the VRPF, however, a rectangular observation model of the same width d but fixed lengthlv = 5 was

used. The zoomed results in Fig. 8 clearly show that the edgeŷ(t) estimated using the standard PFs is

typically less smooth and piecewise linear.

The results of applying MTA for kinematic parameter estimation based on the edges extracted using

PF3 and VRPF are shown in Table I (results for PF1 are not given here, since this filter frequently
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failed to find the edges at all, as indicated above). The RMSEs for both PF3 and VRPF in finding the

edge are approximately the same, but the velocity estimatescomputed using the linear approximation

are different. This difference depends on the absolute valueof the velocity, and for higher velocity

values (especially the shrinkage velocity), VRPF is about 3–7% more accurate than PF3. The results

also show that prefiltering of the images does not improve the estimates significantly. This indicates

that the observation model robustly estimates the mean intensities in the regionsSB and SF even at

very low SNRs. Prefiltering in this case worsens the estimation by blurring the already hardly visible

edges before applying the VRPF.

3) Sensitivity Analysis:We also assessed the sensitivity of the proposed VRPF method to changes in

the expected velocities. To this end, the parameter valuesν+ andν− were varied. It was observed that

deviation of these parameters from the ground truth values decreased the accuracy of the method. In

order to reduce the inaccuracy in the parameter estimation,which is caused by suboptimal initialization

of the VRPF, the following procedure was used in practice. The proposed algorithm was executed

iteratively, in a “bootstrapping” fashion. First, the initial velocity valuesν+ andν− are approximately

specified, with large standard deviationsσν+ and σν− . After the first run, these parameters, which

are still inaccurate but now closer to the optimal values, are reestimated using the MTA. Then, the

algorithm is initialized with the new estimates and rerun. The number of iterations can be either user

defined or specified by the desired RMSE between two edges estimated in consecutive iterations. In

the experiments, we found that this approach always resulted in estimates in the range (ν±σν) defined

by the ground truth.

In order to assess the robustness of the proposed iterative initialization procedure, we ran a number

of iterations from different initial values ofν+ andν−. In the most non-informative case, the estimates

were fixed toν+ = 0 and ν− = 0 and the standard deviationsσν+ and σν− were taken to be larger

than 1. Typical convergence results of the velocity estimates to the ground truth values are shown in

Fig. 9. After a short “burn-in” period of 1–3 first iterations, the velocity estimation is stabilized and

every next run of the algorithm from the initial values givenby the previous iteration does not improve

the accuracy of the velocity estimates. Increasing the standard deviationsσν+ and σν− has influence

only on the estimates during the “burn-in” period, and finallyleads to the same ground truth velocity

estimates. If the algorithm is initialized with the estimates that are close to the target values, the “burn-

in” period is usually shorter – one or two iterations. The proposed VRPF method was also initialized

with extreme initial values that would not be observable in practice:ν+ = 5, σν+ = 1, ν− = −30,

σν− = 3 and already after the first iteration, the obtained estimateswere close to the target values,

in the rangeν+ ∈ (0.3, 0.6) andν− ∈ (2, 3). In practice, for our biological application, we normally

run the VRPF estimation for five iterations and the initial velocity estimates are fixed toν+ = 0 and

ν− = 0.
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TABLE I

RESULTS OF PARAMETER ESTIMATION IN SYNTHETICALLY GENERATEDIMAGES OF MICROTUBULE DYNAMICS USING

MTA BASED ON THE EDGES EXTRACTED WITH DIFFERENT COMBINATIONS OFPREFILTERING AND PARTICLE FILTERING

METHODS. THE VELOCITY ESTIMATES ARE GIVEN IN [PIX/FRAME].

SNR RMSE ν+
± sd ν−

± sd fcat fres

Ground truth values

- - 0.50±0.005 -3.00±0.005 0.009 0.018

VRPF without prefiltering

0.4 2.54 0.47±0.07 -2.41±0.79 0.011 0.019

0.6 1.43 0.50±0.03 -3.03±0.61 0.009 0.018

0.8 1.23 0.49±0.02 -2.91±0.62 0.009 0.017

1.0 1.15 0.50±0.01 -2.96±0.37 0.009 0.017

1.2 0.96 0.49±0.01 -2.95±0.34 0.009 0.018

VRPF with bilateral prefiltering

0.4 2.01 0.48±0.07 -2.44±0.83 0.010 0.017

0.6 1.86 0.50±0.02 -2.86±0.40 0.009 0.015

0.8 1.64 0.49±0.02 -2.93±0.34 0.009 0.017

1.0 1.33 0.49±0.03 -3.05±0.36 0.009 0.017

1.2 1.25 0.49±0.02 -2.98±0.32 0.009 0.018

VRPF with anisotropic diffusion prefiltering

0.4 2.41 0.47±0.08 -2.14±0.56 0.010 0.019

0.6 2.55 0.49±0.08 -2.91±0.64 0.010 0.021

0.8 1.44 0.49±0.03 -2.98±0.39 0.009 0.018

1.0 1.13 0.49±0.02 -2.91±0.44 0.009 0.018

1.2 1.05 0.49±0.02 -2.91±0.34 0.009 0.018

PF3 without prefiltering

0.4 2.72 0.47±0.08 -2.44±1.02 0.006 0.026

0.6 1.46 0.50±0.05 -2.71±0.92 0.011 0.014

0.8 1.12 0.50±0.05 -2.73±0.21 0.009 0.017

1.0 0.98 0.49±0.02 -2.81±0.27 0.009 0.015

1.2 1.02 0.49±0.02 -2.79±0.31 0.009 0.018

As can be seen from Table I and Fig. 9, for low SNR kymoimages (SNR< 0.6), the shrinkage

velocity is always severely underestimated, which is also true for other methods (see Table II). The

estimate ofν− does not converge to the correct value even when the VRPF is initialized using the

ground truth values forν− andν+. The error is larger for larger speed values due to the nonlinear error

propagation during the slope estimation (as it was pointed out in Section II-B). At the same time, using

the [pixel/frame] units for the velocity in the proposed VRPFgives the possibility to accurately estimate

any velocity values from the real experiments, given in [µm/s]. This can be achieved by adjusting the
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Fig. 9. Results of the velocity estimation using the proposed iterative initializationprocedure. The initial values ofν+
=

ν−

= 0 and σν+ = σν− = 1 are used for the initialization of the proposed algorithm (the first run). In each iteration, the

obtained velocity estimates are used as initial values for the next iteration leading to the convergence of the estimates to the

ground truth values after 3–4 iterations.

the parameters∆t and∆y during the imaging in order to obtain the velocity valuesν (in [pixel/frame])

in the desired range (for example, for the shrinkage velocity |ν| ≤ 3) according toν = νm∆t/∆y,

whereνm is the real velocity in [µm/s].

The described iterative initialization procedure breaks down for low SNR kymoimages in situations

where the initial standard deviationsσν+ and σν− are too small (for example, in the case of our

synthetic data,σν+ < 0.05 andσν− < 0.1). In this case, the initialization is done outside the “capture

range” in the parameter space and the iterative estimation will not converge to the correct (or even

to the above mentioned underestimated) velocity values. This range of no convergence is typically

very small and contains values ofσν+ , σν− that are much smaller than the values that we propose to

use for the initialization. Within the Bayesian estimationframework, by specifying the initial velocity

values with such high accuracy (smallσν− andσν+), we ignore the observations (the information from

the kymoimages) during the estimation procedure and rely mostly on the predictions from the prior

transition model withν+ = 0 andν− = 0. In such a case, the initial velocity estimates will never be

corrected by the observations and the edge will not be found.On the other hand, by specifying the

initial velocity values inaccurately (largeσν− and σν+), we take into account the observations more

than the predictions from the motion model, and this way we can capture at least some parts of the

edge correctly (which is enough for the first iteration) and approximately estimate the velocity values

(which will have smaller and more realisticσν− andσν+) for the next iteration.

4) Comparison With Other Methods:The performance of the proposed VRPF method was also

compared with the results of edge extraction by two other methods that were adapted for the kymograph

analysis. In those experiments, the parameters of the considered methods were manually adjusted to

obtain the best performance. First, we used a freely available plugin for ImageJ (National Institutes of

Health, Bethesda, MD [52]), NeuronJ, which implements an interactive neurite tracing technique [53].

April 21, 2010 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 21

0 200 400 600 800
time [s]

20
40
60
80

100
120
140
160

y 
[p

ix
]

SNR=0.4
SNR=0.6
SNR=1.0

Fig. 10. Examples of edge extraction using NeuronJ applied to the gradient magnitude images obtained from the synthetic

image data (see also Fig. 6) with different SNR levels.

(a)

(b)

Fig. 11. Results of edge extraction from the synthetically generated kymoimage (SNR =0.6) using the Canny edge detector

for two different values of the hysteresis thresholds.

NeuronJ was originally developed for accurate detection and tracing of individual neurites in 2D

fluorescence microscopy images of cells in culture. It is capable of tracing bright thin elongated

structures superimposed on dark, noisy background by computing for each pixel in the image a measure

based on the eigenvalues of the second-order derivative matrix computed from the image intensities

around that pixel [53]. Such measure reflects how likely the image intensities around that pixel resemble

an elongated structure and is used as a cost function during the search for the optimal path that connects

two user-specified points in the image, where “optimal” meanshaving a globally minimal cumulative

cost according to a predefined function. The algorithm can dealwith very low contrast and possible

gaps along the bright structure of interest. In our experiments as an input for NeuronJ, we used the

gradient magnitude images obtained using the Gaussian derivatives at scaleσG = 3, in which edges

appear as neurite- or vessel-like structures (see Fig. 6(c)). The algorithm usually failed to find the

correct edge if smaller scales (σG < 3) were used. The “shortest” paths obtained between two points,

which were manually specified in the beginning and the end of the kymoimage, were analyzed using

the MTA. The examples of edge extraction are shown Fig. 10. The results of the analysis using the

same set of synthetic images as in the case of the VRPF method are presented in Table II. It can be

seen that especially the shrinkage velocity estimates are far inferior to those of the VRPF method. For

visual comparison, the edge information extracted using the Canny edge detector [39] for two different

values of hysteresis thresholds is shown in Fig. 11.

The second considered approach for edge extraction is based on labeling the kymograph intensities

into two classes (MT body and background), followed by extraction of the boundary that separate those
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Fig. 12. Examples of segmentation results obtained using Graph Cuts applied to the synthetically generated images (see also

Fig. 6) with SNR=0.4 (a), SNR=0.6 (b) and SNR=1 (c).

two regions. For this purpose we used a graph cut technique (further abbreviated as Graph Cuts), which

is a robust method for globally optimal image segmentation that recently became popular and was shown

to outperform similar energy minimization-based segmentation and classification methods [54]–[56].

For segmentation purposes, the method optimally minimizesthe energy that consists of two terms: the

data dependent term that evaluates the penalty for assigning a particular pixel to a given label and the

smoothness term that evaluates the penalty for assigning two neighboring pixels to different regions.

The incorporation of prior information about the relation between the neighboring pixels using the

smoothness term improves the quality of the segmentation drastically compared to classifiers that do

not employ Markov Random Fields (see [54], [55], [57] for moreinformation on this subject). We

employed the implementation of graph cut segmentation technique with a 8-neighbor system also used

in [56] (for more details see [55] and [56]). Examples of the segmentation results are shown in

Fig. 12. The velocity estimates obtained by the MTA after the edge extraction from 20 synthetically

generated kymoimages using Graph Cuts are shown in Table II.The results of the segmentation show

that it is very difficult to accurately separate MTs from background for low SNR kymoimages. Even

for SNR levels around 1, where the proposed VRPF method has no difficulties to accurately estimate

the kinematic parameters, the small inaccuracies in the edge extraction (Fig. 12(c)) led to unacceptable

(about 30-50%) relative errors in shrinkage velocity estimates (see Table II).

5) Semi-Automatic Kymograph Construction Procedure:In order to apply the proposed VRPF

technique, the kymographs should be constructed from the original noisy DIC image sequences (see

Fig.13 for an example). In practice, biologists manually select relevant MTs for further analysis. This

selectiveness is necessary for several reasons: in a movie that contains a number of growing and

shrinking MTs some of them might be only partially visible (only one end, see Fig.13, MT number 3)

due to the limited field of view, some might display no dynamic activity, or be positioned perpendicular

to the DIC shading gradient and because of that poorly imagedcompared to other MTs in the same

movie. For these reasons, only a small portion of all visibleMTs (typically about 10-30%) is included in
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TABLE II

RESULTS OF PARAMETER ESTIMATION IN SYNTHETICALLY GENERATEDIMAGES OF MICROTUBULE DYNAMICS USING

MTA BASED ON THE EDGES EXTRACTED USINGNEURONJ AND GRAPH CUTS. THE VELOCITY ESTIMATES ARE GIVEN IN

[PIX/FRAME].

NeuronJ Graph Cuts

SNR ν+
± sd ν−

± sd ν+
± sd ν−

± sd

0.4 0.47±0.05 -0.93±0.63 0.48±0.11 -0.78±0.32

0.6 0.49±0.04 -1.59±0.53 0.47±0.05 -1.52±0.47

1.0 0.49±0.03 -1.62±0.37 0.49±0.04 -2.15±0.41

1

2

1

3

- +

-

+

-

1.5 µm

2 µm (a) (b)

Fig. 13. Example of a single frame from typical DIC microscopy image sequence in our real experiments (a). Three MTs

(number 1, 2 and 3, with indicated (+) or (-) ends), marked using the observation curves obtained by the semi-automatic

kymograph construction procedure and manually truncated (for visualization purposes) to cover only the MT body (b). The

thick white lines (close to the MTs) indicate the range of MT motion. The inset shows the zoomed MT tip and demonstrates

the difficulty of finding the exact position of the MT end (in a single image), which is located somewhere in the region of

about 1.5µm, indicated by the corresponding arrows.

the analysis. Automatic construction of kymographs for allvisible MTs and the further analysis would

always require a manual correction/selection procedure applied to the final estimates, which makes this

approach impractical. Hence, such selection is usually done in the very beginning and kymographs are

built only for a specified set of MTs.

As was described in Section II-B, the kymographs are built by defining an observation lineL along

the bright part of a MT in the image sequence and sampling the image intensities in time alongL.

In order to reduce the noise in the kymograph, the averaging of nl pixel values along the direction

perpendicular toL is used (we say that the observation line has ”width”nl). As an example, the

resulting kymographs, constructed using a straight observation line along MT number 2 in Fig.13, for
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several line widthsnl, are shown in Fig. 14(a-d). The averaging improves the image quality up to some

extent (Fig. 14(b)), but if the line width is too large, the averaging of bright and dark parts of the MT

diminishes the benefits (Fig. 14(d)). Additionally, it is possible that the straight lineL will not cover

the MT body properly for MTs that are slightly bent. In practice, such bending does not cause any

problems, because most of the time biologists do not try to cover the whole MT body with such line,

but only the relevant dynamic parts (see the thick white lines in Fig.13 that indicate the MT motion

range in the whole image sequence), which indeed can be accurately approximated by a straight line.

In order to deal with potential frame-to-frame drifts of MT bodies in the image sequence, we devised

the following semi-automatic procedure for kymograph construction, based on our previous work on

particle filtering tracking of vessel-like structures in medical imaging [47], [48]. In order to find the

observation curveLc (see Fig.13, the white curves along the MTs) rather than a straight line, the 2D

particle filter is used (further abbreviated as the 2DPF), whichis capable of tracing the bright ridge

of MT body if the appropriate observation model is used. The original observation model employed

in [47] was designed for bright elongated structures on darkbackground. In order to deal with the

black-and-white appearance of MTs in the DIC microscopy imaging, we used a 2D observation model,

which is similar in appearance to a 2D Gabor filter, but which isa 1D Gaussian function (with the

variance of 20-50) in a cross-section along the MT directionand a derivative of a 1D Gaussian function

(with a variance of 5, which reflects the width of the MT appearance in the DIC microscopy imaging) in

the perpendicular cross-section direction. The direction is automatically estimated by the 2DPF during

the tracing, along with the location of the bright ridge. The 2DPF is manually initialized by clicking

on the MT body in one of the frames, for example on the ”seed”, which is visible in every frame. The

initial MT direction for that location is obtained by using the Hough transform in a small square image

region around the specified point. The 2DPF runs both ways (in opposite directions) starting from the

initial location until the image border is encountered. Thisway, two kymographs (for plus and minus

MT ends) are constructed and can be further analyzed using the proposed VRPF method. The resulting

kymographs built for MT number 2 (Fig.13) are shown in Fig. 14(e-h). It can be observed that due to the

fact that the observation curvesLc follow the bright intensity ridges more accurately than thestraight

observation lines, the widthnl in this case can be safely chosen between 1 and 3 pixels, producing

kymoimages of optimal image quality. In practice, we run the2DPF for every frame, which produces a

set of observation curvesLc that are used to form a kymoimage by taking the image intensities in every

frame along the corresponding observation curve. For our application, the interframe displacement of

those curves was much smaller than one pixel, again confirmingthat the straight observation lines are

quite appropriate.

The 2DPF, which performs the estimation within the Bayesian framework, can accurately trace the

MTs in a single frame, due to the combination of the measurements (information from the images)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 14. Example of kymographs obtained for MT number 2 (see Fig. 13(b)) using a straight observation lineL (a, b, c and

d) and observation curvesLc obtained by the semi-automatic kymograph construction procedure (e, f, g and h) for different

width nl =1, 3, 5, and 7 pixels, respectively for both cases.

and the specified prior information about the MTs – on a small scale they are strictly linear structures.

With this approach, even for extremely low SNR images we achieve accurate estimation (see more on

validation of a similar 2DPF in [47], [48]). When the 2DPF reaches the MT tip, it continues tracing

through the background until it faces the image border. During that period of the estimation there are

no measurements from the MT in the image (only background), and because of that only the transition

prior is used, which effectively extrapolates the observation curve from the MT tip to the image border.

As a result, for that part of the observation curve we get a smooth and rather straight line, which is not

critical, because the image intensities sampled over that part are coming from the background anyway.

At the same time, it is very difficult to locate the exact location of the MT tip (the border where the

MT ends) in a single 2D image. As can be observed from Fig.13 (see the inset) the MT end in this case

is located somewhere in the region of at least 1µm, and once again, the frame-to-frame displacement

of the MT during the growth event is less than 0.05µm. This demonstrates the fact that with the error

in locating the MT tip of about 1µm it is impossible to accurately estimate the velocity as interframe

displacement over time and that is the main reason why we developed and applied the advanced VRPF

method.

B. Evaluation on Real Data

For the validation of the VRPF method on real data we collectedkymographs from three represen-

tative DIC microscopy image sequences acquired to study theinfluence of different concentrations of

EB3 (end-binding protein 3) and GFP-EB3 (EB3 fused to the green fluorescent protein) on the MT

growth and shrinkage velocities (ν+ andν−) and the catastrophe rate (fcat). The sequences were taken

from experiments with MT nucleation from stable tubulin seeds, where 15µM of tubulin was added
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Fig. 15. Example of a kymograph generated in the experiments on real DIC microscopy image data with SNR≈ 1 (a), the

results of segmentation using Graph Cuts (b) and the results of edge estimation by Graph Cuts, NeuronJ and the proposed

VRPF (c).

(Experiment I), or, in addition, 1µM of EB3 (Experiment II), or 1µM of GFP-EB3 (Experiment III),

and from each sequence 10–20 kymographs were built manually[58]. The image sequences contained

about 1000–1200 frames (one per second) of size700× 500 pixels (of size86× 86 nm2). To estimate

the parameters of interest, for each experiment 10 kymographs were analyzed manually and using

the proposed VRPF method. The results are presented in Table III, where the speed estimates are

also converted toµm/min. The usage of these units is more common in biological experiments and it

also allows straightforward comparison with our recently published results [58]. An example of edge

extraction using VRPF in real data together with the edges obtained using the NeuronJ and Graph Cuts

are shown in Fig. 15(c). As an example, the velocity estimatesfor the kymograph shown in Fig. 15(a)

obtained by all the considered methods are as follows (in theform (ν+ ± σν+ , ν− ± σν−)): manually

(0.47± 0.05, −2.79± 0.42), VRPF (0.48± 0.06, −2.82± 0.36), NeuronJ (0.31± 0.13, −1.23± 0.35),

Graph Cuts (0.41± 0.08, −2.03± 0.43). Application of a paired Studentt-test revealed no statistically

significant difference between the estimates obtained by manual and VRPF-based analysis (p-values

≫ 0.05 in all cases), suggesting that the proposed automatic method can replace the laborious manual

procedures.

IV. CONCLUSIONS

In this paper we have proposed a new approach for the automatic analysis ofin vitro microtubule

dynamics imaged using time-lapse differential interference contrast microscopy. It is based on a trans-

formation of the 2D image sequences into kymographs (space-time images) for each microtubule along

a corresponding observation line. By using this representation, the task of tracking microtubule tips on

a per-frame basis in the noisy images, which from our previous work is known to be a difficult and

error-prone problem, is replaced by a segmentation of spatiotemporal structures (edges in our case).

For the extraction of these structures from the kymographs,we have proposed a variable-rate particle
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TABLE III

RESULTS OF PARAMETER ESTIMATION IN REALDIC MICROSCOPY IMAGE DATA SETS USING MANUAL ANALYSIS VERSUS

VRPF.

ν+
± sd ν−

± sd fcat ν+ ν−

[pix/frame] [pix/frame] [µm/min][µm/min]

Experiment I (pure tubulin)

Manual 0.19±0.04 -2.06±0.43 0.0021 0.56 -10.63

VRPF 0.17±0.07 -1.89±0.52 0.0020 0.51 -9.72

Experiment II (tubulin and EB3)

Manual 0.52±0.05 -2.78±0.65 0.0133 2.68 -14.34

VRPF 0.49±0.07 -2.84±0.51 0.0141 2.52 -14.65

Experiment II (tubulin and GFP-EB3)

Manual 0.49±0.08 -2.88±0.41 0.0132 2.52 -14.86

VRPF 0.50±0.06 -2.72±0.50 0.0145 2.58 -14.03

filtering method, which is better capable of dealing with abrupt changes than standard particle filtering

methods. The method is built within a Bayesian framework and optimally combines the measurements

and prior knowledge about the underlying (imaging and motion) processes. For the estimation of

important kinematic parameters from the extracted edges, we have adopted multiscale trend analysis.

The quantitative evaluation of the proposed method was done using realistic synthetic images as well

as real microscopy image data from biological experiments.From the results of the experiments on

synthetic data, where the ground truth of the microtubule tip position was available, it was concluded

that the method is capable of accurate estimation of the important kinematic parameters. Moreover,

it was concluded that the method is more robust and more accurate than standard particle filtering

methods and several other advanced edge extraction techniques that we compared with. For the real

data, the proposed method was compared to manual analysis carried out by expert biologists. The

results of this comparison clearly demonstrated that the automatically estimated parameters are in good

agreement with the results obtained manually. Together, these observations lead to the conclusion that

the proposed method can replace laborious manual analyses.
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