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Abstract

Studying intracellular dynamics is of fundamental impoda for understanding healthy life at the
molecular level and for developing drugs to target diseasegsses. One of the key technologies to
enable this research is the automated tracking and motilysis of these objects in microscopy image
sequences. To make better use of the spatiotemporal infimmthan common frame-by-frame tracking
methods, two alternative approaches have recently begroged, based on either Bayesian estimation
or space-time segmentation. In this paper, we propose tdicenthe power of both approaches,
and develop a new probabilistic method to segment the trat#ise moving objects in kymograph
representations of the image data. It is based on varialdeparticle filtering and uses multiscale trend
analysis of the extracted traces to estimate the relevaenidtic parameters. Experiments on realistic
synthetically generated images as well as on real biolbgnage data demonstrate the improved

potential of the new method for the analysis of microtubuleaimnics in vitro.

Index Terms

Bayesian estimation, variable-rate particle filters, ma#lle trend analysis, motion analysis, bio-

logical microscopy, microtubule dynamics.

I. INTRODUCTION

Motion analysis of subcellular objects plays a major rolaiimderstanding fundamental dynamical

processes occurring in biological cells. Since many diseasiginate from a disturbance or failure
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of one or more of these processes, their study is of interestonly to life scientists, but also to

pharmaceutical companies in the attempt to develop adeqirags. Even though many intracellular
interaction mechanisms are well understood these daysy mpaestions still remain unanswered. In
some cases, where the analysis in living cells (in culturés wivo) is confounded by other intracellular

processes, it makes sense to study the objects of infaresto, where the influence of other structures
or processes is removed, reduced, or known [1], [2].

Intracellular dynamics is usually visualized using adweah@fluorescence microscopy imaging tech-
nigues, including stimulated emission and depletion (STEDR) tatal internal reflection fluorescence
(TIRF) microscopy, where the objects of interest are labeli¢d fluorescent proteins [3]. Alternatively,
non-fluorescence based techniques, such as phase contrasbr(@ferential interference contrast
(DIC) microscopy can sometimes be used, which do not redabeling [4], [5]. In either case, the
optical resolution of the microscope is much lower (on theeoof 100 nm) than the size of the objects
of interest (on the order of nanometers), causing the l&itbe imaged as blurred spots (without sharp
boundaries) due to diffraction. The quality of the imageauishier reduced by high measurement noise
levels [3], [5]. Both types of distortions contribute to thenbiguity of the data, making automated
gquantitative image analysis an extremely difficult task.

In time-lapse microscopy, where hundreds to thousands airZZD images are acquired sequentially
in time, the main task is to track the objects of interest fgirs, vesicles, microtubules, etc.) and
compute relevant motion parameters from the extracte@di@ijies. In practice, manual tracking is
labor intensive and poorly reproducible, and only a smalttion of the data can be analyzed this way.
The vast majority of automatic tracking methods [6]-[12] eleped in this field consist of two stages:
1) detectionof objects of interest (independently in each frame), andirking of detected objects
from frame to frame (solving the correspondence problenncé&ihe methods employed for the first
stage operate on data with low signal-to-noise ratio (SNIRJ, linking procedure in the second stage
is faced with either many false positives (noise classifiedlgects) or false negatives (misdetection
of actually present objects).

Contrary to these two-stage tracking methods, which tyfyicse only very few neighboring frames
to address the correspondence problem, methods that méiee bse of the available temporal in-
formation usually show better results. Such trackers ateeeibuilt within a Bayesian estimation
framework [13], [14], which in any frame uses all availabdenporal information up to that frame, or
they consider the 2D+t or 3D+t image data as one spatioteah3@r or 4D image, respectively, and
translate the estimation of trajectories into a segmemati spatiotemporal structures [15], [16].

In this paper, we propose to combine the power of the latter &pproaches, and develop a
variable-rate particle filtering method that implements Bayesian estimation framework for tracing

spatiotemporal structures formed by transforming theimaigtime-lapse microscopy image data into a
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special type of spatiotemporal representation: kymogdfi]-[21]. This combined approach, which
to the best of our knowledge has not been explored beforaltsda more accurate extraction of the
spatiotemporal structures (edge-like image structuresiincase) compared to particle filtering applied
directly to the image sequences on a per-frame basis [13].

The paper is organized as follows. In Section Il, we descrileehiiblogical application considered
in this paper and the proposed methods to model, acquinesftnan, preprocess, and analyze the
image data. In Section Ill, we present experimental restlepplying our method to synthetic image
sequences, for which ground truth was available, and toDEalmicroscopy image data of microtubule

dynamics. A concluding discussion of the main findings is gjiire Section IV.

Il. METHODS
A. In Vitro Microtubule Dynamics Model

Microtubules (MTs) are polymers of tubulin, which assemipi® ihollow tubes (diametex25 nm)
in the presence of guanosine triphosphate (GTP), botvivo andin vitro [22], [23]. In vivo, MTs
are responsible for the support and shape of the cell and lmajor role in several intracellular
processes such as cell division, internal cell organipatand intracellular transport. MT dynamics
(also referred to as dynamic instability) is highly regatitboth spatially and temporally, by a wide
family of microtubule-associated proteins (MAPS) [24]. Taderstand the specific interactions between
regulatory factors and microtubules is of great interestiébogists. Misregulation of MT dynamics, for
example, can lead to erroneous mitosis, which is a charstitefieature in neurodegenerative diseases.

Microtubule dynamic instability is a stochastic processwitching between growth and shrinkage
stages, regulated by MAPs [25]. The growth velocity,, depends on soluble tubulin concentration
available for polymerization and GTP-tubulin associatiod dissociation rates. The shrinkage velocity,
v~, which is usually much higher than the growth velocity, islépendent of tubulin concentration
and is characterized only by the dissociation rate of guarodiphosphate (GDP) tubulin from the
depolymerizing end. The growth velocity vivo can be up to 10 times faster thanvitro. Two other
important events that characterize dynamic instabiligyrascue(switching from shrinkage to growth)
and catastrophe(switching from growth to shrinkage) [25]. In practice, taralysis of MT dynamics
includes estimation of ™, v, and the rescue and catastrophe frequendgigsand f... The rescue
ratein vitro is very low unless specific rescue factors are added to thg asshmight be difficult to
estimate reliably [2].

Recent studies reveal a special class of MAPs, plus-enlitiga@roteins (+TIPs), that are able to
accumulate at MT growing ends [24], [26]-[28]. The mechamsigip which +TIPs recognize MT ends
have attracted much attention and several explanations lb@en proposed [24], [27], [29]. One way

to understand the mechanism employed by individual +TIPs lamdnolecular mechanisms underlying
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Fig. 1. Dynamics model describing microtubule behawowitro.

their functions is by measuring the distribution and disptaent of +TIPs in time. However, due to lack
of robust and accurate automatic methods, the manual amalysally is a labor intensive procedure
which very likely leads to user bias and loss of importanoinfation. In the case of experiments in
living cells it is extremely hard to decouple the effect dii@tregulators while studying +TIPs influence
on MT dynamics. The advantage of vitro investigation is the minimal environment in which the
influence of various +TIPs can be dissected individually. Reaervitro studies start to reveal the
mechanisms of +TIPs end-tracking and the regulation of MT dyos by individual +TIPs [30]. This
can potentially lead to combining multiple +TIPs in order toawmstitute then vivo MT dynamics and
observe the collective effect of +TIPs.

The stochastic behavior of the MT tip can be modeled using amhjcal system with three states
(Fig. 1): G (growth), S (shrinkage), andS; (no dynamic activity). Each state is characterized by a
velocity parametew € {v*,v~, v°} and a duration time intervat ¢ {r*, 7=, 7%}, describing the
duration of the corresponding stage. The following statesitions are allowedS, — G (the MT starts
to grow), G — S (catastrophe)S — G (rescue), ands — S, (the MT is completely disassembled).
At each time point the MT can “stay” only in one of the stated &r a period of time no longer than
the corresponding for that state. In our simulations, the time and velocitygoaeters are generated
randomly (Section 1lI-A), and because of that it is allowed‘lEave” the stateS sooner than— if
the MT is completely disassembled in shorter time. If afievet7— the MT was not disassembled
completely (did not reach staty), a rescue occursS(— &) and the MT switches to growing. A
similar three-stage model of MT dynamics can be designedhi®m vivo situation. In this case, state
S, should be replaced with a state that corresponds to a “pamssit [22], and all the transitions

(arrows in Fig. 1) should be bidirectional.

B. Imaging Technigue and Kymographs

In our studies, the dynamic behavior of MTs is imaged using Di@€roscopy [31], which is

effectively used for biological specimens that cannot ialized with sufficient contrast using bright-
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Fig. 2. Example of a DIC microscopy image. Microtubule nucleation initiates fstable tubulin “seeds”. In the experiments,

“observation lines” are defined along MT bodies to construct kymdgrap

field microscopy. The resulting images (see Fig. 2 for an exangwke similar to those obtained with
phase-contrast microscopy and depict objects as bladidwshadows on a gray background with good
resolution and clarity. The advantages of DIC over fluoreseenicroscopy is that the samples do not
have to be stained. This also eliminates the possible influehdkiorescent proteins on dynamical
processes being studied. The main limitation of this imag@uinique is its requirement for a thin and
transparent sample of fairly similar refractive index t® sturroundings.

Automatic analysis of MT behavian vitro using time-lapse DIC microscopy images is a complicated
task. The goal is to follow (track) the fast-growing (so cdltplus”) end of each MT so as to obtain 2D
paths in the image plane, from which all the parameters efrést (velocity and frequency estimates)
can be computed. One of the main problems is that due to tHaeanimage formation process in DIC
microscopy, the object appearance (and especially the p)Tdépends on the imaging conditions (for
example, the relative angle between the sample and the soimpe polarization prism) and cannot be
easily modeled by appearance models, as in the case of fleaEsmicroscopy imaging. Additionally,
the real object location is further obscured by diffractiomodeled by the point-spread function (PSF)
of the microscope.

Another issue that requires careful consideration is thgteal sampling rate. In our experiments,
images are acquired at a rate of one per second, which isltghefor imaging the microtubule growth
velocitiesin vitro (30-40 nm per second). The shrinkage, on the other hand, hapgth much higher
velocities, and with the mentioned sampling rate this pgede imaged in only 3-10 image frames
(the time between the catastrophe event and arriving a Stat On average, microtubule growth is
usually observed during 30-100 frames, and in this case ribeegs is highly oversampled. It is not

possible simply to lower the sampling rate, as this causelensampling of the shrinkage processes.
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Fig. 3. Example of a kymograph obtained from the DIC microscopy imagkowing the dynamics of both microtubule
ends.

This problem arises due to the fact that we are imaging twogases (growth and shrinkage), which
may occur simultaneously (for different microtubules) amedscales that differ approximately by a
factor of ten, with one constant sampling rate. The relativégh sampling rate is both a blessing and
a curse. It is a blessing because it allows one to observe thiemin more detail and possibly detect
rare and extraordinary movements that would otherwise gwticed. It is also a curse, however, as
the growth and shrinkage velocities are usually such thatcttange in MT length from one frame to
the next is (much) less than one pixel, even if §patial sampling is done at the Nyquist rate. This is
on the same order as the positional estimation errors madealoyal or automatic approaches [13]. As
a result, instant velocity estimates™( or »~) computed as the ratio of positional change over elapsed
time between two consecutive frames, are doomed to be highcurate.

In order to exploit all image data and at the same time obtadnenaccurate results, we abandon
the idea of frame-by-frame tracking of objects directly lie toriginal data, and we propose to base the
estimation of motion parameters on a transformation of thta dhat is more amenable to multiscale
analysis. Specifically, we propose to use a kymograph repiasmn[17], [21] (also called a kymoimage
in this paper) for each MT. It is constructed by defining (seetiSedll-A5) an “observation line”L
(Fig. 2) in the original image along the MT body. The length/ofshould approximately equal the
maximum expected length of MTs in the sample. Image intensilyes are then sampled equidistantly
along L, yielding a vector of “measurements” at tinte J; = {J(j) : j = 1,...,Y}, whereY
is the number of samples for the selected MT in every imagmdraln practice, to increase the
SNR, the measuremeni’(j) are obtained by averaging pixel values in the vicinityjoflong a line
perpendicular td.. The resulting kymoimage (see Fig. 3 for an examplé)),y) = {J; : t =1,...,T},
is the collection of measurement vectors, where every colugontains the measuremenisas pixel
values, andl" is the number of frames in the image sequence. In our expetsn®T nucleation
from stable tubulin oligomers was studied [32]. These “séeaflsays remain present and cannot be
completely disassembled. In the kymoimages (Fig. 3) theycharly visible as a bright horizontal
strip.

To estimate the kinematic parameters of interest from thmdignages, the edge locatiaiit) (cor-
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Fig. 4. Application of various edge preserving smoothing methods to cagendata (top). The left column shows the results
of smoothing, the middle column depicts the edge information extracted @Ghugsian derivatives, and the right column

shows the distribution of intensity values in the smoothed images.

responding to the MT tip) should be accurately extracteopést should be preserved). In kymoimages,
the instant velocitys at any timet’ is estimated ag = (dy/dt);—y = tan (¢), wherey is the angle
between the time axis and the tangenyo) at¢ = ¢’. As a result, small errors in the angle estimates
may lead to large errors in the velocity estimation, due ® ribnlinearity introduced by the tangent
(the closery is to 90 degrees, the larger the errors).

In our method, the analysis is conducted in three subsegsteps: 1) preprocessing, 2) edge
extraction, and 3) multiscale trend analysis. Step 1 enfatioe quality of the image using edge
preserving filtering. Step 2 traces the edges by a particle ¢#tpable of using multiscale measurements.
Finally, step 3 analyzes the extracted edges by splittinmtimo relevant parts and performing linear
approximation in order to compute all the necessary parnsieT he three steps are described in more

detail in the following subsections.
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C. Edge Preserving Smoothing

The main challenge in estimating the growth velocity, shrinkage velocityy—, and the two
transition frequencieg..s and f.a;, is to accurately segment the edges in the kymoimages (Figwe)
main approaches to edge detection are differentiation aodehtfitting. In practice, differentiation,
being a noise enhancing operation, requires some form ob#img, which in turn entails the risk
of blurring edge information. Better results may be obtdibg the use of nonlinear, edge preserving
filters. Fig. 4 shows the results of applying the most freqyeasied nonlinear filtering techniques to
our image data: the median filter [33], the maximum homoggnedtighbor (MHN) filter [34], the
bilateral filter [35], the mean-shift filter [36], and anisqiio diffusion [37]. The examples clearly
demonstrate that noise can be reduced to some extent wigigemping edge information. However,
they also show that edges may still not be clearly defined intgpaf) the image. Subsequent edge
extraction by means of Gaussian differentiation [38] maguleeither in detection of noisy background
structures (at small scales), or in too much positional ttag®y (at larger scales), neither of which is
acceptable for accurate slope estimation of the lineasprthe edgey(t).

To overcome the problems caused by differentiation, we ggepto use model fitting for edge
detection, using patrticle filtering (PF) methods. The PF can béoikeg to reduce the overload of
fitting the model in every pixel position, by incorporatingdmmation about the edge model, the image
noise distribution, and the probability of finding the edgethie neighborhood of a pixel, by taking
into account the probability of edge existence at neighmgpmpixels. In this case, the use of edge
preserving prefiltering is still advantageous. The PF mainhjaees the edge extraction part, which in

differentiation based approaches such as Canny’s algof89] is usually based on hard thresholding.

D. Variable-Rate Particle Filtering

The prefiltered kymoimage is an input for the next step, wherégba filtering (PF) is performed
to estimate the edge location(t). Particle filters [40], [41] implement the concept of Bayesia
estimation, where at each time potrd system statg; is estimated on a basis of previous states, noisy
measurements; obtained from sensors, and prior knowledge about the widgrprocess [40]. For
our application, the simplest working implementation of R be constructed with the state vectey
which describes the position of the edge in every colurofithe image! (¢, y), and the measurements
z;, Which are the intensity values in the corresponding columof I(¢,y). Prior knowledge about
the system is specified by the dynamics model, which descthestate transition process, and the

observation model:

Xt = ft(xt—lvvt)7 Zy = gt(xta ut)v (l)

where f; and g; are possibly nonlinear functions and and u; are white noise sources. The choice

of these functions is application specific and is given beldlternatively, the same state estimation
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problem can be formulated by specifying two distributionss;|x;—1) andp(z.|x;), instead of (1) [40],
[41].

The solution of the state-space problem given by (1) is théepios probability distribution function
(pdf) p(x0:¢|Zo:t), Wherexg., = {xo,...,x:} andzg.; = {zo, ...,z }, which can be found either exactly
(when f; and g; are linear andv; and u; are Gaussian) using the Kalman filter [41] or, in the most
general case, using approximations such as sequentialeMoatio (MC) methods [40], [42]. In the
latter case, the posterior pdf is approximated with a se¥oMC samples (referred to as “particles”),

{Xé?eawgi)}z]‘v:sl’ as N
p(xoulzo) = 3w d(xo0s — x{)), @
=1

Wherex(@ describes one of the possible state sequences (pathz)ug\%ds the weight indicating the
probability of realization of that path. The solution using BFgiven by a recursive procedure that
predicts the state from time— 1 to ¢t and updates the weights based on newly arrived measurements
z; as

xgi) ~ p(xt\xgi_)l) and wgi) x wgi_)lp(zt|xti)), 3)

1=1,...,Ns. The minimum mean square error (MMSE) or maximum a posterioAR)estimators
of the state can be easily obtained frifx..|zo.;) [40].

Commonly, the state sampling rate is determined by the iatehich the measurements arrive. In
the application under consideration, where the MT dynansiasharacterized by prolonged periods of
smoothness (growth and shrinkage stages) with infrequearpschanges (rescue and catastrophe), it
is possible to obtain a much more parsimonious representati the MT tip trajectory if the state
sampling rate is adapted to the nature of the data — more pbétés are allocated in the regions of
rapid variation and relatively fewer state points to smeottections. Unfortunately, this idea cannot be
implemented using the standard PFs because the number gbaitati® which would typically be much
smaller than the number of observations, is random and unki@&forehand. In order to deal with this
randomness, variable-rate particle filtering (VRPF) methoalgebeen proposed recently [43], [44].
The VRPF can be compared to the more conventional interactidéphe models (IMM) approach,
which uses switching between a discrete set of candidatandigal models [8], [45], but was shown
to outperform IMM in most cases [43]. The VRPF, which was itligoroposed for tracking of
highly maneuvering targets [43], is howadays successtiglied in other fields, for example DNA
sequencing [46], but has not been investigated before imostopy.

Contrary to the standard state-space approach, wheredteevstriablex; evolves with time index
t, within the VRPF framework the state, is defined as; = (0, 7x), wherek € N is a discrete state
index, 7, € RT > 7,_; denotes the arrival time for the state andd,, denotes the vector of variables

necessary to parametrize the object state. In trackingcagpioins, the vectof,, includes variables such
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as position, velocity, heading, etc. For our applicatioe, defined, = (yx, vx), whereyy, is the edge
position at timer;, along the observation liné, andv, = (dy/dt);—,, describes the direction of the
edge att = 7 in the imagel (¢, y). Similar to the standard PF, it is assumed that the state segugn

a Markov process, so the successive states are indepgndentirated with increasing according to

X ~ p(Xp|xp—1)
4)

= po(Ok|Ok—1, T, Th—1)Pr (Tk Ok -1, Th—1)-

These assumptions and models, apart from the constraintr,_,, are very general, and the specific
choices are dictated by the application under investigatio

The measurements, t € N, occur on a regular time grid and in the case of the standardaRF c
be uniquely associated with the corresponding statdn the VRPF framework, the underlying state
process is asynchronous with the measurement process emdtéhof arrival of the measurements is
typically (but not necessarily) higher than that of the estatocess. In order to define the appropriate
observation model (also called the likelihood) in this cagkere there may be no corresponding state
variable for the measurement at timethe data pointz; are assumed to be independent of all other

data points, conditionally upon the neighborhobd of statesx ., = {xx; k € A}, that is

Z Np(zt|X07"'7XOO> :p(zt|x./\/f) (5)

The neighborhoodV; is constructed as a deterministic function of the time indeand the state
sequencexg., and thus it is a random variable itself (this feature is naspnt in the standard state-
space models). For practical (computational) reasonsnéighborhood\; will contain only states
whose timesr;, are “close” to the observation time Furthermore, the interpolated stdte= hi(Xn7,)

is used, wheré,(.) is a deterministic function of the state in the neighborhdgd The observation

density (5) is then expressed as

p(ze|xn,) = p(zt|ét)- (6)

In general, the construction of the state process and tlghbeihood structure is not unique and for
any given model and different choices will lead to differatgorithmic trade-offs.

Having all the definitions, we aim to recursively estimate $bkgquence of variable-rate state points as
new measurements become available. Similar to the standarthé®¥RPF distributionp(x, -+ |2o.t)
can be obtained using the two-step predict-update proeesithere;" denotes the index of the state

variable in); that has the largest time index. Using the factorization (4), we model the MT dynamics
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with the transition priors
P (OO, —1, Ty Th—1) =

P(Vk|Vk—1 Ykr Yk—1> Thes Th—1) X

(7)
p(yk|vk—1a Yk—1, Tk, Tk’—l) =
P(Vk|Ve—1)0(Yk — Yk—1 — Vk—1(Tk — Th—1),
Pr(Tk|Ok—1,Tk—1) = Upr, 470 7, 101) (8)

wherel{, ;) denotes the uniform distribution in the rangeb]. Thus, the states;, for the prediction-

update procedure are sampled as
T — Th—1 ~ Upro 717,
Yk = Yk—1 + Vk—1(Tk — Th—1), 9)
v ~ p(vk|vg—1).

The sampling of the new states, at time ¢ is performed only for those particlesffzl for which
T,Eijl < t, which also reduces the computational load compared totdrelard PF implementation.
The crucial point here is to efficiently model the prigwy|vi—1) in order to catch the rapid changes
in edge orientation (corresponding to the state transtidescribed in Section 1I-A). The underlying
assumption about the MT dynamics in this study is that the M@ ean either grow with nearly
constant velocityy*, shrink with nearly constant velocity—, or show almost no activity:{ =~ 0).
This idealization of reality can be justified by specifying aidehally the variances for the velocity
estimates,c?,, o2, o2, which account for small deviations in the measured vekxifrom the
average values ™, v—, and v?. Taking into account three possible types of motion, we defiree

following prior p(vg|vi—1) for the velocity componenty,
(1 —a)N(vg—1,02,. )+
aN(v=,02),

for vp_1 > Vin

(1 — @)V (vp-1, 02 )+
p(og|vr—1) = a (N(V+, o2 )+ N, 030))/2 (20)

for vi,_1 < =V

(1= Q)N (op1,02, )+
aN(’/+7 0'34.)

for [vp_1| < Vi
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where0 < a < 1 is a weighting parameter that balances the mixture comgsr@rresponding to
different types of motion in the transition pdf (in trackirmgpplications,a would correspond to the
probability of object/target birth). The threshold, defines which prior should be used: it defines the
smallest velocity below which all the small changes in the Miigth are considered to belong to state
Sp. Since all three types of MT motion are quite different, thef@enance of the algorithm is not
influenced by possible inaccuracies in setting up the thidsig, which can be estimated in advance
from the experimental data. Additionally, the threshoidat Vi, does not imply that at every time point
we assume that the system evolves according to only one mbDdel to the probabilistic nature of
the VRPF, at every time step the posterior pdf describes tbleapility to find the MT in each of the
three states.

In order to define the likelihoog(z.|x /), we model the edge appearance using an observation model
that we have previously used successfully for tracking otar structures in noisy medical images
[47], [48]. The proposed model describes a small perfectyrsiedge and consists of two rectangular
regions,Sp and Sy (black and white rectangles in Fig. 5, respectively). Forheitermediate state
0, = hy(x;,), which is required for the likelihood computation, the rigigrhood is defined as/; =
{k,k — 1;7,—1 <t < 7;,}. For the MT length changes, linear interpolation betweeo h&ighboring
statesty, andf;_; is used,y; = yr—1 + vp—1(t — 7x—1), and the orientation of the rectangles for each

time pointt € [r,_1, 71) is defined by the velocity componem@l. The regionsSg and Sy are defined

as follows
Sp(0r) = Sp(Th—1, Tk, V1) = {< NV ) :le0L]be [o,d]}, (12)
SF(ét) = SF(kalaTky'Uk:fl) — {(\l/ﬁt):v;b , \l/vf;;;b ) : l (= [OJU],b € [O,d]}, (12)

wherel, = (1 — T—1)4/1 +v7_,.

To measure the likelihood of edge existence at some imagiiguosvith an orientation defined
by the velocity component of the state vector, the averageg@émintensity valuesyz and up, are

computed over the regionsg and Sr. The likelihood is defined as

exp (W) -1, pr—pp>0,

07 /’LF_/'LBSO7

p(ze|xp,) (13)

which defines the pdf of the edge location and favors sharpsedger smoother noisy intensity
transitions. Two model parameters that control the seitgitto the edge location, the width and

the scaling factory, should be specified. The length is automatically defined by the time sampling
functions (8). The variety in the length of the observationdeloadds a multiscale property to the
analysis. In general, for small values lpfthe estimation of.p and . is less accurate than for larger

values ofl,,. Additionally, for largel,, the sensitivity of the observation model to the edge ori@ra
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Fig. 5. The observation model used in the experiments, which comffeestensity distribution in two rectangular regions
(black and white strips) and defines the likelihood of edge existence Xajnjiles of applying the MTA to the extracted edge

using the VRPF in order to compute the kinematic parameters (b-d).

increases — the likelihood decreases rapidly for small ligisaents of the observation model with
the edge. Usually this is a desirable property, because dge ean be located more precisely. The
disadvantage of using only lardgis the disability of the observation model to capture the fastion
transition stages.

Alternatively, the gradient image can be used as measutsnm@nthe VRPF, which represents the
edges computed using the Gaussian derivatives. In this taseixel value at some position in the
gradient image is the likelihood for finding the edge. Deprgdin the scale at which the derivatives
are computed, the slopes of the tangent lines, which artedeta the velocity values, can be accurately
estimated, but only in regions having the same motion typeah be seen from Fig. 4 that in the
regions of the gradient image where catastrophes are prebenedge appearance is distorted — the
transition between the growth and shrinkage is smootheds [Eaids to a lowering of the angles of
the tangent lines and, as a result, to underestimation ofvéfecity values. Due to the mentioned
nonlinearity, this underestimation is especially severetlie shrinkage velocity.

In order to derive the MMSE estimator, the principle of fixed-Emoothing is used, which greatly
improves the final results. Here, the MMSE estimate of the statenet — At is computed using the

posterior as distributiom(x. -+ |zo:¢), that is

N, )
@t—At = Zw£Z)ht(XNt—At)' (14)
=1

In other words, the estimation of the edge position at tine delayed until the measurements at time

t + At will be processed and the posterior updated.
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E. Multiscale Trend Analysis

Having the estimated edgg after applying the VRPF, we employ multiscale trend anal(iifA) [49]
in order to automatically compute all the parameters ofregte At this stage of our analysis, it is
necessary to detect all the catastrophe and rescue evahtspéinthe live historyg; into parts of
growth and shrinkage, possibly separated by stages of notygstate Sp),

The MTA was originally proposed for analysis of trends in tisggies and was recently successfully
applied for analysis of MT transport in melanophores [5Qn{(pared to methods that try to construct
an optimal piecewise linear approximatidg(¢) with a minimal number of segments for a given eror
the MTA builds a multi-level hierarchy of consecutively reailetailed piecewise linear approximations
of the analyzed time series at different scales. In genigialnot known beforehand which scale should
be used for the analysis, but some prior knowledge aboutgpkcation can significantly narrow down
the range of levels that should be analyzed after applying MT

The following robust procedure was experimentally found todpce accurate estimates of the
kinematic parameters using MTA. First, MTA decompositionperformed for a number of levels,
I = {1,...,Np}, where N, is a fixed (large) number. Each level in the decomposition can be
represented with a set of nodésq}gz1 that partitiony(¢) on the interval[0, 7], where each node
is given by four parametersy(, ¢, a?,3?), and describes the linear approximation if) on the
interval [¢J, ¢{] with slopea? and intercepj? = g(t{). In our implementation of MTA, the number of
nodes (piecewise linear approximations) at leved equal tol, and the first leveli(= 1) is given by
the base line; = yy, wherey, = min; §(¢). At each levell, the number of catastrophes (local maxima
in the approximation ofj(¢) at that level)N¢a((), is computed. Due to the nature of the signgl) and
the way MTA works, for some range of hierarchy levels the namif catastrophes will stay constant
(dNcay/dl = 0). In general, the functioVe(!) is non-decreasing. By finding the maximum in the
histogram of{ Nea(l) : { = {1,..., Np}}, which shows how many levels contain the same number of
catastrophes, we can obtain the number of actual catastreydntsVy,. From the set of level§i;}
that correspond taVg,, (satisfying Nea(l;) = Ny, the median is selected;, as the level for further
parameter computations.

For the selected decomposition level and each catastropé® €,,,, m = {1,..., Nj}, which
occurs at time¢,, the two sets of neighboring nodelss, : t¢,_; < ¢ <t5,Na?>0, ¢=1,...,1*}
and{s, : t&, < t{ <& .  Na? <0, ¢g=1,...,01*} are analyzed (see Fig. 5(c)), whetfe= 0 and
ty.+1 = 1. On both sides of the local maximu@,,, the nodes with the steepest slapeare selected
and the linear approximations corresponding to those nadegxtrapolated until the intersection with
y = yo, giving the valuest!, andt! . The rescue evenR,  (m’' € N) is detected between two
catastrophes§’,,, andC,,,, 1 if £ > EQ,LH. In this case, the local minimum in the approximation;¢f)

on the intervalt®,,, ¢} ] gives the position of the rescu&;,. Then, the approximation is recomputed
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for §(¢) on the intervalgt?, , t¢ ] and[t¢,, t. ]. If the rescue event is positioned between two catastrophes
C,, and C,,,+1, the approximation is recomputed on the interi¢g), t2,]. The new approximation is
given by a new set of nodeS* = {s;}iﬁga‘ (see Fig. 5(d)), which is used to compute the kinematic
parameters: the total growth and shrinkage tiniEs,(7~) and the corresponding velocity(, )

and frequencyfcq; and fres €Stimates:

R 1
=) (-1, =g Y (- that, (15)
VsieS VsieS®
a?>0 a?>0
_ L 1
T = Z (tf—t), v = T Z (] —tg)a’, (16)
Vs, eS™ Vs, eS™
a?<0 a?<0
fcat = N:at/TJra fres = ers/Tia (17)

where N is the number of rescue events. In practice, the VRPF outpwsoa piecewise linear

approximation of the edges, so that the described procdziised on MTA runs robustly and accurately.

Ill. EXPERIMENTAL RESULTS

The performance of the proposed VRPF-based method was ewvhlusitey synthetic images (Sec-
tion 1lI-A) and real data from studies of MT dynamigs vitro (Section 1lI-B) and in comparison with
two other methods that were adapted for edge extraction mokyages. The synthetic images, for
which the ground truth was available, were used to explogeatituracy and robustness of the method
depending on the image quality (different SNR levels) andpghemeter values that model the MT
dynamics. The experiments on real data enabled us to comiparestimated kinematic parameters

with manual analysis by expert biologists.

A. Evaluation on Synthetic Data

1) Simulation Step:The proposed technique was evaluated using computer geddgamnoimages
for different SNRs. The dynamics of the MT tip was simulatedoagding to the model described in
Section II-A (Fig. 1). The values of the model parameters wenelaely generated each time the MT
changes its state, by drawing a sample from the Gamma distih ~ ~ G(4,1), and, depending on
which state the MT was entering, the duration times were défase+ = 207, 7~ = 107, 7° = 107.
The corresponding velocity values were drawn from the Gaasdistribution,v™ ~ N(0.5,0.005),
v~ ~ N (-3,0.005), 1Y ~ N(0,0.05). These model values are representative of practical values.

Having the simulated dynamicg(t), 0 < ¢t < T (see Fig. 6(a) for an example), we created
corresponding images of siZzéx Y, whereT' = 1000 andY = max; y(t) +2yo for several SNR levels.
Padding with a strip of siz& x yg, yo = 20, was applied to the top and bottom of the image to avoid

border problems when using the described rectangular wdigmm model (Section [I-D). The height
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time [s] (a)

Fig. 6. Examples of the synthetic images used in the experiments. The ®thiMd tip dynamics (a) is used to create the
synthetic images for different SNR levels (b), for which the gradiengiesalc) are computed using the Gaussian derivatives

at scalesg = 3.

of the generated images was in the range of 100-150 pixelshvdorresponds to 8—12n (A; = 1s
andA, = 80 nm). For allz, the background image intensity was set/tp= 100 if j > y(¢) + yo and
the remainder of the image was set to the foreground intergit= I3 + cSNR, wheres = 10. To
create the final noisy image, each pixel value was replacddaviatndom sample from the distribution
N(I(t,7),0?). For the chosen values @f; ando = 10, this corresponds to the Poisson noise model,
which is dominant in light microscopy images [3]. Examplessghthetic images for various SNRs
are shown in Fig. 6(b). Again, for visual comparison, the etidermation (the gradient magnitude)
obtained using the Gaussian derivatives at segle= 3 is shown in Fig. 6(c).

The parameters of the described VRPF algorithm were fixed to dtewing values:v* = 0.5,
vT = =3, 0% = 05, 02, = 0.05 02 = 0.5, Vi = 0.15, d = 6, 70 = 3, 7} = 10, At = 20,
Ng =500, N;, = 80, a = 0.01, v = 10. Since the ground truth was available in these experimemss, t
accuracy of extracting the edges was evaluated using aitraali quantitative performance measure:

the root mean square error (RMSE) [51]:

RMSE= |- 3 (ur — i1)*. (18)
H=

wherey; defines the true position of the edge at timej; is a MMSE estimate ofy; given by the

VRPF, T is the set of time points for which the edge exists, ahdlenotes the set size operator.

2) Results: The proposed VRPF method was evaluated using 20 synthetigatigrated images.
Examples of edge extraction for SNR0.6 are shown in Fig. 7. In addition to the proposed VRPF, we
also implemented two standard particle filters, denoteddP PF3, in which the state transition process
is synchronous with the measurement process (see Sect@n RF uses only one state transition
model, p(x;|x;—1), which describes nearly-constant velocity motion [13]. CBpture abrupt changes

in the edges, the variance of the process noise in this tramsnodel had to be made rather large.
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Fig. 7. Sample results of extracting the edge information from the noisthetio images using the proposed VRPF and

two types of standard PFs in comparison with the ground truth.
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Fig. 8. More detailed results of extracting the edge information from theyrayisthetic images using the proposed VRPF
and two types of standard PFs in comparison with the ground truth. Thegm®tooms of the first two peaks in Fig. 7 and

show the results combined.

Due to this high variance, the typical overshoots just &ftercatastrophe events (see Fig. 7(b)) highly
corrupted the slope estimates, in particular the estimatiothe shrinkage velocity. Additionally, for
the low SNR image data, the filter frequently lost the edge amcktt spurious background structures.
PF; uses the same set of transition models as the VRPF. Contrahetobservation model used in
the VRPF, however, a rectangular observation model of thee saitth d but fixed lengthl, = 5 was
used. The zoomed results in Fig. 8 clearly show that the gdgeestimated using the standard PFs is
typically less smooth and piecewise linear.

The results of applying MTA for kinematic parameter estimatbased on the edges extracted using

PF; and VRPF are shown in Table | (results forP&re not given here, since this filter frequently
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failed to find the edges at all, as indicated above). The RMSEsdtr BF; and VRPF in finding the
edge are approximately the same, but the velocity estinwtegputed using the linear approximation
are different. This difference depends on the absolute vafuidne velocity, and for higher velocity
values (especially the shrinkage velocity), VRPF is abouty8-more accurate than PFThe results
also show that prefiltering of the images does not improve #tienates significantly. This indicates
that the observation model robustly estimates the meandities in the region$p and Sr even at
very low SNRs. Prefiltering in this case worsens the estimatioblbrring the already hardly visible
edges before applying the VRPF.

3) Sensitivity AnalysisWe also assessed the sensitivity of the proposed VRPF mathgthhges in
the expected velocities. To this end, the parameter valtiesnd v~ were varied. It was observed that
deviation of these parameters from the ground truth valeesedised the accuracy of the method. In
order to reduce the inaccuracy in the parameter estimatibith is caused by suboptimal initialization
of the VRPF, the following procedure was used in practice. Tropgsed algorithm was executed
iteratively, in a “bootstrapping” fashion. First, the imitivelocity values/™ andv— are approximately
specified, with large standard deviations: and o,-. After the first run, these parameters, which
are still inaccurate but now closer to the optimal values, r@estimated using the MTA. Then, the
algorithm is initialized with the new estimates and rerune Tlumber of iterations can be either user
defined or specified by the desired RMSE between two edges estinmaiconsecutive iterations. In
the experiments, we found that this approach always rekuitestimates in the range { o,,) defined
by the ground truth.

In order to assess the robustness of the proposed iteratfigdization procedure, we ran a number
of iterations from different initial values of* and~~. In the most non-informative case, the estimates
were fixed tor™ = 0 andv~ = 0 and the standard deviatioms: ando,- were taken to be larger
than 1. Typical convergence results of the velocity es@®dbd the ground truth values are shown in
Fig. 9. After a short “burn-in” period of 1-3 first iterationdiet velocity estimation is stabilized and
every next run of the algorithm from the initial values giMenthe previous iteration does not improve
the accuracy of the velocity estimates. Increasing thedstahdeviationsr,+ and o,- has influence
only on the estimates during the “burn-in” period, and finddlgds to the same ground truth velocity
estimates. If the algorithm is initialized with the estimsthat are close to the target values, the “burn-
in” period is usually shorter — one or two iterations. The mwgd VRPF method was also initialized
with extreme initial values that would not be observable iacgice:v™ = 5, o,+ = 1, v~ = —30,
o,- = 3 and already after the first iteration, the obtained estimaie® close to the target values,
in the rangev™ € (0.3,0.6) andv~ € (2,3). In practice, for our biological application, we normally
run the VRPF estimation for five iterations and the initialogiy estimates are fixed tet = 0 and

v =0.
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TAB

LE |

19

RESULTS OF PARAMETER ESTIMATION IN SYNTHETICALLY GENERATEDMAGES OF MICROTUBULE DYNAMICS USING

MTA BASED ON THE EDGES EXTRACTED WITH DIFFERENT COMBINATIONS OPREFILTERING AND PARTICLE FILTERING

METHODS. THE VELOCITY ESTIMATES ARE GIVEN IN[PIX/FRAME].

SNR||RMSE | vizsd | vtsd | far | fes
Ground truth values
- - | 0.50:0.005 | -3.00:0.005 | 0.009 ] 0.018
VRPF without prefiltering

0.4 2.54 0.47+0.07 | -2.41£0.79 | 0.011| 0.019
0.6 1.43 0.50+0.03 | -3.03+0.61 | 0.009 | 0.018
0.8 1.23 0.49+0.02 | -2.91+£0.62 | 0.009 | 0.017
1.0 1.15 0.50+0.01 | -2.96+0.37 | 0.009 | 0.017
1.2 0.96 0.49+0.01 | -2.95+0.34 | 0.009 | 0.018

VRPF with bilateral prefiltering

0.4 2.01 0.48+0.07 | -2.44£0.83 | 0.010| 0.017
0.6 1.86 0.50+0.02 | -2.86£0.40 | 0.009 | 0.015
0.8 1.64 0.49+0.02 | -2.93+0.34 | 0.009 | 0.017
1.0 1.33 0.49+0.03 | -3.05£0.36 | 0.009 | 0.017
1.2 1.25 0.49+0.02 | -2.98+0.32 | 0.009 | 0.018

VRPF with anisotropic diffusion prefiltering
0.4 241 0.47+0.08 | -2.14+0.56 | 0.010| 0.019
0.6 2.55 0.49+0.08 | -2.914+0.64 | 0.010 | 0.021
0.8 1.44 0.49+0.03 | -2.98£0.39 | 0.009 | 0.018
1.0 1.13 0.49+0.02 | -2.914+0.44 | 0.009 | 0.018
1.2 1.05 0.49+0.02 | -2.91£0.34 | 0.009 | 0.018
PF; without prefiltering

0.4 2.72 0.47+0.08 | -2.44+1.02 | 0.006 | 0.026
0.6 1.46 0.50+0.05 | -2.714+0.92 | 0.011 | 0.014
0.8 1.12 0.50+0.05 | -2.73£0.21 | 0.009 | 0.017
1.0 0.98 0.49+0.02 | -2.814+0.27 | 0.009 | 0.015
1.2 1.02 0.49+0.02 | -2.79£0.31 | 0.009 | 0.018

As can be seen from Table | and Fig. 9, for low SNR kymoimages (SNR.6), the shrinkage

velocity is always severely underestimated, which is aise for other methods (see Table Il). The

estimate ofv~ does not converge to the correct value even when the VRPFtialized using the

ground truth values for— andv ™. The error is larger for larger speed values due to the naaliagor
propagation during the slope estimation (as it was pointgdroSection II-B). At the same time, using
the [pixel/frame] units for the velocity in the proposed VR@iizes the possibility to accurately estimate

any velocity values from the real experiments, given im[s]. This can be achieved by adjusting the
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Fig. 9. Results of the velocity estimation using the proposed iterative initializatiooedure. The initial values oft =
v~ =0ando,+ = o,- =1 are used for the initialization of the proposed algorithm (the first run).achdteration, the
obtained velocity estimates are used as initial values for the next iteratioimdetadthe convergence of the estimates to the

ground truth values after 3—4 iterations.

the parameterd,; andA, during the imaging in order to obtain the velocity value@n [pixel/frame])
in the desired range (for example, for the shrinkage vefoeit < 3) according tor = v, A;/A,,
wherew,, is the real velocity in gm/s].

The described iterative initialization procedure breakamldor low SNR kymoimages in situations
where the initial standard deviations,+ and o,- are too small (for example, in the case of our
synthetic datag,+ < 0.05 ando,- < 0.1). In this case, the initialization is done outside the “capt
range” in the parameter space and the iterative estimatilmut converge to the correct (or even
to the above mentioned underestimated) velocity valuess Tdmge of no convergence is typically
very small and contains values 6f+, o,- that are much smaller than the values that we propose to
use for the initialization. Within the Bayesian estimatimamework, by specifying the initial velocity
values with such high accuracy (smajl- ando,+), we ignore the observations (the information from
the kymoimages) during the estimation procedure and relgtimon the predictions from the prior
transition model withvt = 0 and»~ = 0. In such a case, the initial velocity estimates will never be
corrected by the observations and the edge will not be fo@rdthe other hand, by specifying the
initial velocity values inaccurately (large,- ando,+), we take into account the observations more
than the predictions from the motion model, and this way we capture at least some parts of the
edge correctly (which is enough for the first iteration) angragimately estimate the velocity values
(which will have smaller and more realisti,- ando,+) for the next iteration.

4) Comparison With Other Methodsfhe performance of the proposed VRPF method was also
compared with the results of edge extraction by two othehous that were adapted for the kymograph
analysis. In those experiments, the parameters of the adenesl methods were manually adjusted to
obtain the best performance. First, we used a freely availphigin for ImageJ (National Institutes of

Health, Bethesda, MD [52]), NeuronJ, which implements adaractive neurite tracing technique [53].
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Fig. 10. Examples of edge extraction using NeuronJ applied to the gtadagmitude images obtained from the synthetic

image data (see also Fig. 6) with different SNR levels.

Fig. 11. Results of edge extraction from the synthetically generated kyageirtSNR =0.6) using the Canny edge detector

for two different values of the hysteresis thresholds.

NeuronJ was originally developed for accurate detectiod tacing of individual neurites in 2D
fluorescence microscopy images of cells in culture. It is bbpaf tracing bright thin elongated
structures superimposed on dark, noisy background by congpior each pixel in the image a measure
based on the eigenvalues of the second-order derivativaxneaimputed from the image intensities
around that pixel [53]. Such measure reflects how likely theginatensities around that pixel resemble
an elongated structure and is used as a cost function dumnggiarch for the optimal path that connects
two user-specified points in the image, where “optimal” melaagng a globally minimal cumulative
cost according to a predefined function. The algorithm can diéhl very low contrast and possible
gaps along the bright structure of interest. In our expenim@s an input for NeuronJ, we used the
gradient magnitude images obtained using the Gaussiavateeis at scaler; = 3, in which edges
appear as neurite- or vessel-like structures (see Fig..6[bg algorithm usually failed to find the
correct edge if smaller scalesd < 3) were used. The “shortest” paths obtained between two points
which were manually specified in the beginning and the end efkimoimage, were analyzed using
the MTA. The examples of edge extraction are shown Fig. 10. Theltscof the analysis using the
same set of synthetic images as in the case of the VRPF metkgoresented in Table IlI. It can be
seen that especially the shrinkage velocity estimatesaarimfierior to those of the VRPF method. For
visual comparison, the edge information extracted usieglhnny edge detector [39] for two different
values of hysteresis thresholds is shown in Fig. 11.

The second considered approach for edge extraction is baskbeling the kymograph intensities

into two classes (MT body and background), followed by ettom of the boundary that separate those
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©

Fig. 12. Examples of segmentation results obtained using Graph Cutschfiptiee synthetically generated images (see also
Fig. 6) with SNR=0.4 (a), SNR=0.6 (b) and SNR=1 (c).

two regions. For this purpose we used a graph cut techniguinér abbreviated as Graph Cuts), which
is a robust method for globally optimal image segmentatiat tecently became popular and was shown
to outperform similar energy minimization-based segmé@naand classification methods [54]—[56].
For segmentation purposes, the method optimally minimizesnergy that consists of two terms: the
data dependent term that evaluates the penalty for asgignparticular pixel to a given label and the
smoothness term that evaluates the penalty for assigniagneighboring pixels to different regions.
The incorporation of prior information about the relationtiaeen the neighboring pixels using the
smoothness term improves the quality of the segmentatiastidally compared to classifiers that do
not employ Markov Random Fields (see [54], [55], [57] for manéormation on this subject). We
employed the implementation of graph cut segmentatiomigale with a 8-neighbor system also used
in [56] (for more details see [55] and [56]). Examples of thgmsentation results are shown in
Fig. 12. The velocity estimates obtained by the MTA after thgeedxtraction from 20 synthetically
generated kymoimages using Graph Cuts are shown in Tablddl results of the segmentation show
that it is very difficult to accurately separate MTs from backgrd for low SNR kymoimages. Even
for SNR levels around 1, where the proposed VRPF method hasffimuldies to accurately estimate
the kinematic parameters, the small inaccuracies in the edtzaction (Fig. 12(c)) led to unacceptable
(about 30-50%) relative errors in shrinkage velocity eates (see Table ).

5) Semi-Automatic Kymograph Construction Procedul: order to apply the proposed VRPF
technique, the kymographs should be constructed from tiggnal noisy DIC image sequences (see
Fig.13 for an example). In practice, biologists manuallyeselelevant MTs for further analysis. This
selectiveness is necessary for several reasons: in a mioaiecontains a number of growing and
shrinking MTs some of them might be only partially visible fpone end, see Fig.13, MT number 3)
due to the limited field of view, some might display no dynangt\aty, or be positioned perpendicular
to the DIC shading gradient and because of that poorly imagedpared to other MTs in the same

movie. For these reasons, only a small portion of all visMEs (typically about 10-30%) is included in
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TABLE Il
RESULTS OF PARAMETER ESTIMATION IN SYNTHETICALLY GENERATEDMAGES OF MICROTUBULE DYNAMICS USING

MTA BASED ON THE EDGES EXTRACTED USINGNEURONJ AND GRAPH CUTS. THE VELOCITY ESTIMATES ARE GIVEN IN

[PIX/FRAME].
NeuronJ Graph Cuts
SNR v+ sd v~ =+ sd v+ sd v~ =+ sd
0.4 || 0.47+0.05 | -0.93+0.63 | 0.48+0.11 | -0.78+0.32
0.6 0.49+0.04 | -1.59+0.53 | 0.47+0.05 | -1.52+0.47
1.0 0.49+0.03 | -1.62£0.37 | 0.49+0.04 | -2.15+0.41

Fig. 13. Example of a single frame from typical DIC microscopy imaggusace in our real experiments (a). Three MTs
(number 1, 2 and 3, with indicated (+) or (-) ends), marked using tleerehtion curves obtained by the semi-automatic
kymograph construction procedure and manually truncated (for lizatian purposes) to cover only the MT body (b). The
thick white lines (close to the MTs) indicate the range of MT motion. The insawstihe zoomed MT tip and demonstrates
the difficulty of finding the exact position of the MT end (in a single image)iciwhs located somewhere in the region of

about 1.%um, indicated by the corresponding arrows.

the analysis. Automatic construction of kymographs forvadible MTs and the further analysis would
always require a manual correction/selection procedupieapto the final estimates, which makes this
approach impractical. Hence, such selection is usualledorthe very beginning and kymographs are
built only for a specified set of MTs.

As was described in Section II-B, the kymographs are built &finthg an observation liné along
the bright part of a MT in the image sequence and sampling rifage intensities in time along.
In order to reduce the noise in the kymograph, the averaging; @ixel values along the direction
perpendicular toL is used (we say that the observation line has "width). As an example, the

resulting kymographs, constructed using a straight olagierv line along MT number 2 in Fig.13, for
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several line widths;, are shown in Fig. 14(a-d). The averaging improves the imagétgqup to some
extent (Fig. 14(b)), but if the line width is too large, the eaging of bright and dark parts of the MT
diminishes the benefits (Fig. 14(d)). Additionally, it is pibés that the straight lind. will not cover
the MT body properly for MTs that are slightly bent. In praeticuch bending does not cause any
problems, because most of the time biologists do not try t@icthe whole MT body with such line,
but only the relevant dynamic parts (see the thick whiteslime Fig.13 that indicate the MT motion
range in the whole image sequence), which indeed can beaebuapproximated by a straight line.

In order to deal with potential frame-to-frame drifts of M®dies in the image sequence, we devised
the following semi-automatic procedure for kymograph ¢aretion, based on our previous work on
particle filtering tracking of vessel-like structures in ned imaging [47], [48]. In order to find the
observation curvd.. (see Fig.13, the white curves along the MTs) rather than agbtréine, the 2D
particle filter is used (further abbreviated as the 2DPF), wiscbapable of tracing the bright ridge
of MT body if the appropriate observation model is used. Thgimal observation model employed
in [47] was designed for bright elongated structures on dm&kground. In order to deal with the
black-and-white appearance of MTs in the DIC microscopy imggwe used a 2D observation model,
which is similar in appearance to a 2D Gabor filter, but whiclai$D Gaussian function (with the
variance of 20-50) in a cross-section along the MT direcéind a derivative of a 1D Gaussian function
(with a variance of 5, which reflects the width of the MT appeagain the DIC microscopy imaging) in
the perpendicular cross-section direction. The directioautomatically estimated by the 2DPF during
the tracing, along with the location of the bright ridge. THePE is manually initialized by clicking
on the MT body in one of the frames, for example on the "seedfiicvis visible in every frame. The
initial MT direction for that location is obtained by usiniget Hough transform in a small square image
region around the specified point. The 2DPF runs both ways (ilmnsigpdirections) starting from the
initial location until the image border is encountered. Tlwisy, two kymographs (for plus and minus
MT ends) are constructed and can be further analyzed usingrtiposed VRPF method. The resulting
kymographs built for MT number 2 (Fig.13) are shown in Fig. 1d)elt can be observed that due to the
fact that the observation curvds follow the bright intensity ridges more accurately than gteight
observation lines, the width; in this case can be safely chosen between 1 and 3 pixels, gingdu
kymoimages of optimal image quality. In practice, we run 2D F for every frame, which produces a
set of observation curvels. that are used to form a kymoimage by taking the image intessit every
frame along the corresponding observation curve. For opliGgtion, the interframe displacement of
those curves was much smaller than one pixel, again confirthiagthe straight observation lines are
quite appropriate.

The 2DPF, which performs the estimation within the Bayesiaméwork, can accurately trace the

MTs in a single frame, due to the combination of the measur&n@mformation from the images)
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Fig. 14. Example of kymographs obtained for MT number 2 (see Fifp)18sing a straight observation lirle (a, b, ¢ and
d) and observation curves,. obtained by the semi-automatic kymograph construction procedure dearfd h) for different

width n; =1, 3, 5, and 7 pixels, respectively for both cases.

and the specified prior information about the MTs — on a smalksiteey are strictly linear structures.
With this approach, even for extremely low SNR images we aehaecurate estimation (see more on
validation of a similar 2DPF in [47], [48]). When the 2DPF reastthe MT tip, it continues tracing
through the background until it faces the image border. iuthat period of the estimation there are
no measurements from the MT in the image (only background),eecause of that only the transition
prior is used, which effectively extrapolates the obseéovaturve from the MT tip to the image border.
As a result, for that part of the observation curve we get actmand rather straight line, which is not
critical, because the image intensities sampled over thdtgse coming from the background anyway.
At the same time, it is very difficult to locate the exact looatiof the MT tip (the border where the
MT ends) in a single 2D image. As can be observed from Fig.18 ffse inset) the MT end in this case
is located somewhere in the region of at leagin] and once again, the frame-to-frame displacement
of the MT during the growth event is less than Q.65 This demonstrates the fact that with the error
in locating the MT tip of about um it is impossible to accurately estimate the velocity asrindme
displacement over time and that is the main reason why welafs@ and applied the advanced VRPF

method.

B. Evaluation on Real Data

For the validation of the VRPF method on real data we collekigdographs from three represen-
tative DIC microscopy image sequences acquired to studynfheence of different concentrations of
EB3 (end-binding protein 3) and GFP-EB3 (EB3 fused to the greeneffeent protein) on the MT
growth and shrinkage velocities{ and~~) and the catastrophe ratg.{). The sequences were taken

from experiments with MT nucleation from stable tubulin dgewhere 15M of tubulin was added
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Fig. 15. Example of a kymograph generated in the experiments on t€afrirroscopy image data with SNR 1 (a), the
results of segmentation using Graph Cuts (b) and the results of edge t&stifog Graph Cuts, NeuronJ and the proposed
VRPF (c).

(Experiment 1), or, in addition, AM of EB3 (Experiment Il), or LM of GFP-EB3 (Experiment IlI),
and from each sequence 10-20 kymographs were built manG&8JyThe image sequences contained
about 1000-1200 frames (one per second) of 3iiex 500 pixels (of size86 x 86 nm?). To estimate
the parameters of interest, for each experiment 10 kymdbgrapere analyzed manually and using
the proposed VRPF method. The results are presented in Tdblehére the speed estimates are
also converted tawm/min. The usage of these units is more common in biologicpeerments and it
also allows straightforward comparison with our recentplished results [58]. An example of edge
extraction using VRPF in real data together with the edgesioéd using the NeuronJ and Graph Cuts
are shown in Fig. 15(c). As an example, the velocity estimiitethe kymograph shown in Fig. 15(a)
obtained by all the considered methods are as follows (iffdha (v* = o0,+, v~ £ 0,-)): manually
(0.474+0.05, —2.79 £ 0.42), VRPF (.48 +0.06, —2.82 + 0.36), NeuronJ (.31 +0.13, —1.23 + 0.35),
Graph Cuts @41 +0.08, —2.03 £+ 0.43). Application of a paired Studemnttest revealed no statistically
significant difference between the estimates obtained byuaiaand VRPF-based analysis-{alues
> 0.05 in all cases), suggesting that the proposed automatic miethio replace the laborious manual

procedures.

IV. CONCLUSIONS

In this paper we have proposed a new approach for the autm@adlysis ofin vitro microtubule
dynamics imaged using time-lapse differential interferenontrast microscopy. It is based on a trans-
formation of the 2D image sequences into kymographs (spameimages) for each microtubule along
a corresponding observation line. By using this represi@ntathe task of tracking microtubule tips on
a per-frame basis in the noisy images, which from our previwork is known to be a difficult and
error-prone problem, is replaced by a segmentation of ajeatiporal structures (edges in our case).

For the extraction of these structures from the kymograpleshave proposed a variable-rate particle
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TABLE Il
RESULTS OF PARAMETER ESTIMATION IN REALDIC MICROSCOPY IMAGE DATA SETS USING MANUAL ANALYSIS VERSUS
VRPF.
vT+ sd v~ 4 sd feat vt v
[pix/frame] | [pix/frame] [ wm/min][ zm/min]

Experiment | (pure tubulin)
Manual || 0.19+0.04 | -2.06+0.43 | 0.0021| 0.56 | -10.63
VRPF || 0.17£0.07 | -1.89+0.52 | 0.0020| 0.51 | -9.72

Experiment Il (tubulin and EB3)
Manual || 0.52+0.05 | -2.78:0.65 | 0.0133| 2.68 | -14.34
VRPF || 0.49+0.07 | -2.844+-0.51 | 0.0141| 2.52 | -14.65
Experiment Il (tubulin and GFP-EB3)
Manual || 0.49+-0.08 | -2.88+0.41 | 0.0132| 2.52 | -14.86
VRPF || 0.50+0.06 | -2.72t0.50 | 0.0145| 2.58 | -14.03

filtering method, which is better capable of dealing with gbrchanges than standard particle filtering
methods. The method is built within a Bayesian framework gptihally combines the measurements
and prior knowledge about the underlying (imaging and mmtiprocesses. For the estimation of
important kinematic parameters from the extracted edgeshave adopted multiscale trend analysis.
The quantitative evaluation of the proposed method was dsimg uealistic synthetic images as well
as real microscopy image data from biological experimelRtem the results of the experiments on
synthetic data, where the ground truth of the microtubuleptisition was available, it was concluded
that the method is capable of accurate estimation of the ritapbkinematic parameters. Moreover,
it was concluded that the method is more robust and more atectihan standard particle filtering
methods and several other advanced edge extraction tegwmthat we compared with. For the real
data, the proposed method was compared to manual analysisdcaut by expert biologists. The
results of this comparison clearly demonstrated that thenaatically estimated parameters are in good
agreement with the results obtained manually. Togethegetfobservations lead to the conclusion that

the proposed method can replace laborious manual analyses.
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