
Tracking in Cell and Developmental Biology

E. Meijering, O. Dzyubachyk, I. Smal, W. A. van Cappellen

Seminars in Cell and Developmental Biology, vol. 20, no. 8, October 2009, pp. 894-902

Abstract: The past decade has seen an unprecedented data explosion in biology. It has become evident that in order
to take full advantage of the potential wealth of information hidden in the data produced by even a single experiment,
visual inspection and manual analysis are no longer adequate. To ensure efficiency, consistency, and completeness
in data processing and analysis, computational tools are essential. Of particular importance to many modern live-cell
imaging experiments is the ability to automatically track and analyze the motion of objects in time-lapse microscopy
images. This article surveys the recent literature in this area. Covering all scales of microscopic observation, from
cells, down to molecules, and up to entire organisms, it discusses the latest trends and successes in the development
and application of computerized tracking methods in cell and developmental biology.
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1 Introduction

It has been increasingly recognized in recent times that life is a miraculous symphony [1]. From fast
metabolic pathways to the cell cycle, to the beating of the heart, all the way to annually repeating seasonal
behaviors, life is composed of a multitude of interconnected oscillations, together constituting a gigantic
orchestra spanning at least 10 orders of time magnitude. Recent investigations seem to suggest that careful
coordination of these rhythms and their interactions is an important precondition for the maintenance of
normal development and health. Conversely, a disturbance at any level of this intricate time network can
be expected to result in disease. Although it is not our purpose here to discuss the interesting findings of
chronobiological investigations, they do emphasize the importance of studying life’s processes in both space
and time [2], that is, to analyze their structure and function.

The ability to visualize cells and subcellular dynamic processes in space and time has been made possible by
revolutionary developments in imaging technology in the past two decades. Advances in molecular biology,
organic chemistry, and materials science have resulted in an impressive toolbox of fluorescent proteins
(GFP and variants) and nanocrystals (quantum dots), and have enabled the study of protein expression,
localization, conformation, diffusion, turnover, trafficking, and interaction [3, 4]. On the hardware side,
advances in optical systems design have taken light microscopy from widefield to (multiphoton) confocal
and spinning disk microscopy [5, 6], and more recent efforts to break the diffraction barrier have further
extended the palette [7,8]. Together, these developments have redefined biological research by enabling the
switch from fixed to living cells and from qualitative to quantitative imaging [2,9].
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As was to be expected, the new possibilities offered by these developments to image (sub)cellular processes
in space, time, and at multiple wavelengths, have resulted in a true data explosion. It has now become evi-
dent that in order to ensure efficiency, consistency, and completeness in handling and examining the wealth
of image data acquired in even a single experiment, computational image management, processing, and
analysis methods are indispensable [10–18]. Thus, it seems that the bottleneck in putting modern imaging
technologies to high-throughput use, has shifted from the “wetware” and the hardware to the development
of adequate software tools and data models. While the need for such tools has been recognized for a long
time in the medical imaging communities, and advanced image processing, computer vision, and pattern
recognition methods have been developed in the past 30 years to enable computer assisted diagnosis in vari-
ous clinical applications [19–21], it is only since relatively recently that similar methods are being explored
to facilitate automated image analysis in biological imaging [22,23].

This article briefly surveys the latest trends and successes in the endeavor to take full advantage of the
vast amounts of image data acquired in biological imaging experiments. The emphasis is on tracking and
motion analysis of objects in time-lapse microscopy images. Updating previous surveys, aimed at engineers
[16,24,25] or biologists [17,26,27] from different perspectives, we cover tracking at all scales of microscopic
observation, from molecules, to cells, to organisms. In view of the rapid developments in the field, and
because of space limitations in the present article, we consider only (a subset of) works published since
the year 2000. First, we give an overview of recent cell segmentation and tracking algorithms, which in
many experiments constitute the basis for further analyses. In the subsequent sections, we shift focus in two
possible directions: from cells down to molecules (capturing the trajectories of intracellular particles), and
from cells up to organisms (following embryogenesis and adult locomotory behavior). The article hopefully
serves as a useful source of pointers to the relevant (mostly methodological) literature on tracking for a wide
variety of applications in cell and developmental biology.

2 Cell Tracking

Being the fundamental units of life, cells are the key actors in many biological processes. Cell prolifera-
tion, differentiation, and migration are essential for the conception, development, and maintenance of any
living organism. These processes also play a crucial role in the onset and progression of many diseases.
Understanding physiological processes in health and disease and developing adequate drugs requires the
imaging and analysis of the (morpho)dynamic behavior of single cells or cells in tissues under normal and
perturbed conditions [28]. This typically involves the tracking and quantification of large numbers of cells
in time-lapse fluorescence, phase-contrast, or intravital microscopy data sets consisting of hundreds to many
thousands of image frames, making manual analysis no option, especially in 3D.

The automation of these tasks faces several challenges, including the generally poor image quality (low
contrast and high noise levels), the varying density of cell populations due to division and cells entering or
leaving the field of view, and the possibility of cells touching each other without showing sufficient image
contrast. Many computerized methods for cell tracking have already been proposed, and some of these have
found their way to commercial and open-source software tools (summarized in [29]), but the consensus
arising from the literature seems to be that any specific tracking task requires dedicated (combinations of)
algorithms to obtain optimal results. Nevertheless, several trends can be observed in the development of
new cell tracking methods, suggesting the superiority of particular algorithms.
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2.1 Segmenting Individual Cells

Cell tracking methods generally consist of two main image processing steps: 1) cell segmentation (the spatial
aspect of tracking), and 2) cell association (the temporal aspect). Segmentation is the process of dividing an
image into (biologically) meaningful parts (segments), resulting in a new image containing for each pixel a
label indicating to which segment it belongs (such as “foreground” versus “background”). One approach to
segmentation is to compare the value of each image pixel to a preset threshold value and to label pixels with
values above (below) the threshold as foreground (background) [22]. Due to its simplicity, thresholding is
one of the most commonly used segmentation methods, but it is also one of the most error-prone [30]. It will
be successful only if cells are well separated and their intensities differ sufficiently and consistently from
the background—a condition hardly ever met in live cell imaging due to severe noise, autofluorescence and
photobleaching (in the case of fluorescence microscopy), or strongly varying intensities and halos (in the
case of phase- or differential interference contrast microscopy).

More sophisticated methods for cell segmentation include fitting predetermined cell intensity profiles (tem-
plates) to the image data. This template matching approach works well for images showing consistent cell
shape [31], but fails in the case of significant variations in cell morphology (between cells per image, or per
cell over time, or both). A more popular approach is to use the so-called watershed transform. In this case,
an image is considered a topographic relief, and “flooding” this relief from the local intensity minima com-
pletely subdivides the image into regions and delimiting contours, by analogy termed “catchment basins”
and “watersheds”, respectively. The most important drawbacks of this method are its sensitivity to noise
and its tendency to yield too fragmented results (oversegmentation). Nevertheless, by combination with
carefully designed pre- and postprocessing strategies, such as marking and model-based segment merging,
the method has been successfully applied to cell segmentation in microscopy [32–35].

Recent years have shown an increasing interest in the use of deformable models for cell segmentation [36–
46]. These are defined either explicitly as parametric contours (mostly for 2D applications) or implicitly as
the zero-level of a so-called level-set function (a mathematical concept that can be applied to image data of
any dimensionality). The latter approach is often preferred, as it can naturally capture topological changes,
such as cell division. Starting from a coarse, initial segmentation, deformable models are iteratively evolved
in the image domain to minimize a predefined energy functional (Fig. 1). The modeling aspect lies primarily
in the definition of this energy functional. Typically it consists of image-related terms (based on image
features such as intensity, gradients, and texture) and image-independent terms (based on shape properties
such as boundary length or surface area, curvature, and similarity to reference shapes). This mixture of terms
enables the incorporation of both image information and prior knowledge about the biological application
[25]. In contrast with the watershed transform, model-evolution approaches have the tendency to yield
undersegmentation of the images (the contours or surfaces of neighboring cells may easily merge in the
process), and usually require postprocessing steps to refine the results.

2.2 Connecting Cells Over Time

After segmentation, the second step in achieving cell tracking is cell association. This refers to the process of
identifying and linking segmented cells from frame to frame in the image sequence to obtain cell trajectories.
The simplest approach to accomplish this is to associate each cell in any frame to the spatially nearest
cell in the next frame (for example according to centroid position) within a predefined range. However,
when dealing with many cells or rapid cell movements, this may easily lead to mismatches. In order to
allow for better discrimination of potential matches, the definition of “nearest” may be extended to include
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Figure 1 Cell tracking. (A) Three frames from a time-lapse fluorescence microscopy image, illustrating
the concept of model-evolution based cell segmentation and association. Cell contours or surfaces can be
defined parametrically or as the zero-level of a higher-dimensional function. In each image frame, the final
contour of a cell (solid line) is obtained by minimization of an energy functional, typically consisting of
image-based and shape-based terms. The initial cell contour (dotted line) for each frame is usually taken to
be the final contour from the previous frame. Cell divisions can be detected by monitoring the shape of the
contour function during energy minimization. (B) Depending on the type of labeling, the appearance of
cells (or in this case their nuclei) may vary greatly, within one frame as well as over time. (C) Thresholding
usually results in a very noisy (at low thresholds) or fragmented (at high thresholds) segmentation. (D)
Model-based segmentation (in this case using level sets) can yield much more sensible results. Once all
cells are tracked, they can be easily extracted individually (E) and geometrically transformed to a reference
coordinate-frame for subsequent intracellular analysis (F).

similarity in (average) intensity, area or volume, perimeter or surface area, orientation of major and minor
axes, boundary curvature, estimated displacement, and other features. Increasing the number of features
used for comparison reduces the risk of ambiguity. A similar argument applies when using so-called mean-
shift processes to iteratively compute cell positions [47,48].

Several of the discussed methods for cell segmentation can naturally be extended to also perform cell asso-
ciation. The concept of template matching, for example, can serve as a basis for image registration between
time points. Registration refers to the process of (global or local) alignment of images, using intensity-
or geometry-based features. This can be done at the cell level [49], at the level of feature points [50], or
down to the pixel level, reminiscent of optic-flow schemes [29, 51]. In the case of deformable models, cell
association can be performed “on the fly”, by using the segmentation results in any frame as initialization
for the segmentation process in the next frame (Fig. 1). Essentially, this is again a nearest-neighbor link-
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ing approach, which works well if the population density is not too high and the rate at which images are
acquired is such that cells do not move more than at most their diameter between consecutive frames. If
these conditions are not met, or they need to be compromised for practical reasons, more sophistication is
required, such as the use of gradient-vector flows [36, 52], estimated cell dynamics [39, 42], and special
procedures to handle cell contacts, divisions, appearances, and disappearances [41,53]. Another trend in the
attempt to achieve more robustness is the use of probabilistic schemes [31,42,44,54].

2.3 Cell Tracking in Practice

Once the cells are properly segmented in all frames of a time-lapse image sequence, and the correct associ-
ations have been established between successive frames, it is relatively easy to compute (morpho)dynamic
features that may reveal biologically relevant phenomena. For example, variabilities in cell shape (within
populations or per cell over time) can be very effectively studied using statistical tools such as principal
component analysis (PCA) of the cell outlines [55]. Power spectrum analysis of size changes over time
have revealed the presence of regularities (periodicities hinting at underlying biochemical clocks) in the
membrane deformation of crawling amoebae that were not obvious from visual inspection [25]. Automated
measurement of cell motility and proliferation have enabled the study of factors influencing osteoblast dif-
ferentiation and growth, involved in the processes of bone formation and maintenance, as well as the dys-
regulation of these processes leading to osteoporosis [56]. As a final example, computerized analysis of cell
velocities, directional persistence, turning frequencies, and invasion profiles, have demonstrated significant
dependence of tumor cell infiltration and migration on cell type and the microenvironment, suggesting that
metastasis is not a completely random phenomenon [57]. These examples clearly illustrate that computer-
ized cell tracking not only provides objective numbers rather than subjective visual impressions, but also
offers a level of sensitivity and statistical power unattainable by human observers.

3 From Cells to Molecules

The capacity of cells to perform their fundamental roles in living organisms is the product of a complex
machinery of intracellular and intranuclear processes, involving thousands of proteins and other constructs.
Spurred by the technological advances mentioned in the introduction, the quest to improve medicine is there-
fore increasingly focussing on acquiring a deeper understanding of these processes. In turn, this has boosted
the demand for powerful image processing tools able to automatically compute the location, distribution,
and dynamics of large numbers of macromolecules in (usually fluorescence) microscopy image sequences.
Going beyond ensemble averages of motion parameters, measured by fluorescence recovery after (or loss
in) photobleaching (FRAP or FLIP) experiments [5, 58], these offer the possibility to study dynamic pro-
cesses at the highest possible level of detail (individual particles), and are often collectively (and somewhat
misleadingly) referred to as “single-particle tracking” tools [24,59].

3.1 Detecting Single Particles

Similar to cell tracking methods, particle tracking methods too generally consist of two main processing
steps: 1) particle detection (within each time frame of a sequence), and 2) particle linking (between succes-
sive frames). The former refers to the process of determining the presence and the location of particles in the
images. Since individual particles (or, equivalently, the fluorescent tags used to visualize them) are typically
one or two orders of magnitude smaller than the optical resolution of the microscope, they have the appear-
ance of diffraction-limited spots (“foci”, Fig. 2). In spite of this, recent studies [61] have demonstrated that
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Figure 2 Particle tracking. (A) Single frame from a time-lapse fluorescence microscopy image, show-
ing hundreds of proliferating cell nuclear antigen (PCNA) foci in the process of DNA replication and
double-strand break repair. (B) Individual foci often appear as diffraction-limited spots, which are well
approximated by Gaussian (mixture) models, to be fitted to the data for detection. (C) Spatiotemporal pro-
jection image of the yellow rectangle in (A), illustrating that moving particles give rise to tubular structures
in space-time, possibly extractable by spatiotemporal segmentation methods. (D) Bayesian network of the
hidden Markov model assumed by probabilistic tracking methods. The posterior probabilityp(xt|zt) of the
true statext of the system (containing all relevant object features) given all measurementszt, is obtained
by prediction based on the posterior of the previous time step and the dynamics modelp(xt|xt−1), fol-
lowed by update of the prediction based on the observation modelp(zt|xt). (E) Example result of tracking
vesicle movements (shown as color-coded trajectories overlaid on the last frame of the time series) using a
probabilistic method [60]. (F) Spatiotemporal rendering of the vesicle trajectories. (G) Comparisons have
shown that the method correlates very well with manual tracking by expert human observers, suggesting
that it may replace the latter, allowing experiments to be scaled up considerably.
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for an individual particle, a localization accuracy of around 10nm is achievable in practice, and that two or
more particles can be resolved with a reasonable level of accuracy for distances of about 50nm and larger.
The limiting factor here is the photon count, or effectively the signal-to-noise ratio (SNR), which should be
as high as possible to maximize estimation accuracy and precision, but in live cell imaging experiments is
usually rather low to minimize photobleaching and photodamage.

The simplest approach to particle detection is to first identify (potential) particle loci by applying intensity
thresholding and then to estimate their positions by computing the centroid (center of intensity mass) for
each locus [62]. For similar reasons as mentioned in the previous section, this is a frequently used but
noise-sensitive approach, with limited applicability to low-SNR live cell imaging experiments [30]. A more
sensible approach is to search for loci with intensity profiles that fit the theoretical profile of a particle. For
subresolution particles, the latter is equal to the point-spread function (PSF) of the microscope, which can
be well-approximated by the Gaussian function [63]. Experiments have shown superior performance of
Gaussian fitting (with a limit of SNR≈ 4) [64] and successful application to the detection of single [65]
as well as clustered particles (using Gaussian mixture models) [66]. More sophisticated methods involve
(in order of increasing performance [67]) wavelet multiscale products [68], Laplacian-of-Gaussian filtering
[69], specialized algorithms from mathematical morphology [60], and machine-learning [70].

3.2 Linking Particles Over Time

As for the linking of particles between consecutive frames, one of the simplest and most commonly used
approaches is to apply the previously mentioned “nearest-neighbor” criterion. Similar to cell association,
however, this quickly leads to ambiguities in the case of high particle densities and velocities [30,71]. Since
individual particles usually appear as nearly identical (PSF-shaped) spots, rather than more extended regions
with possibly varying shape and texture as in the case of cells, the use of additional cues to disambiguate
potential matches is mostly limited to comparing particle intensities and motion consistencies over time.
The linking problem is further complicated by the fact that the total number of particles is usually not
constant, but may vary over time due to splitting and merging events, particles entering and leaving the
field of view, disassembly andde novoassembly, or intermitting fluorescence (as in the case of quantum
dots). In this situation, the only solution is to abandon the idea of matching on a per-particle and per-
frame basis, and to develop more global linking strategies. One way to do this is to consider the tracking
problem as a spatiotemporal segmentation problem (Fig. 2) and to search for optimal paths (typically tubular
structures) through the entire image data [69, 72, 73]. An alternative (but related) approach is to construct
a so-called weighted graph (or a cost matrix) from the detected particles and possible correspondences
(between two or more frames) with their likelihoods, and to find the optimal subgraph (corresponding to the
set of trajectories) by minimizing a global cost function defined on the graph [74–76].

Another very important trend emerging from the recent literature on particle tracking, anticipated a few
years ago [24], is the paradigm shift from deterministic to probabilistic approaches. In deterministic tracking
schemes, such as many of the ones discussed above, hard decisions are made at every step about the presence
or absence of particles and their correspondences over time. In live-cell imaging experiments, however,
there can be a great deal of uncertainty about these decisions. Regardless of the criteria used to detect
or link particles, it makes sense to assign probabilities to potential particle objects and potential particle
correspondences to reflect this uncertainty, and to retain all this information during tracking until the final
stage, where hard decisions may (or may not) be required to allow further analyses.



TRACKING IN CELL AND DEVELOPMENTAL BIOLOGY 8

Generally, probabilistic tracking methods [60, 68, 77–79] implement the concept of Bayesian estimation
(Fig. 2), which deals with the problem of inferring the true state of a dynamic system from noisy mea-
surements (observations) of that system. In this scheme, the “state” is described by a mathematical vector,
which includes all information to be estimated (such as object position, shape, intensity, and velocity).
The estimation is a recursive two-step procedure of 1) state prediction (using dynamics models based ona
priori knowledge of state changes) and 2) state update (using observation models based ona priori knowl-
edge about the measurements given a particular system state). It can be computed analytically by means
of Kalman filtering (in the case of linear system dynamics and Gaussian measurement noise) or to good
approximation by means of sequential Monte Carlo schemes (in non-linear or non-Gaussian cases).

3.3 Particle Tracking in Practice

After particle tracking has completed, a host of kinetic and kinematic features can be readily computed from
the obtained trajectories. Similar to cell tracking, obvious examples include total and net distances traveled,
directional changes and persistence, instant and average velocities and accelerations, and histograms thereof
to compare the distribution of these features between different populations. A more sophisticated and fre-
quently studied feature in particle tracking experiments is the mean square displacement (MSD). It enables
one to compute diffusion parameters of individual particles, as well as viscoelastic properties of the medium
in which they move [80]. By varying the time-lag over which displacements are averaged in a trajectory,
an MSD-time curve can be constructed, the shape of which is indicative of the mode of motion (Brown-
ian, active transport, impeded, confined). The computations need to be carried out with care, however, as
short trajectories and particle localization errors may give rise to apparent subdiffusion patterns [81], and
the averaging process may conceal mode transitions within single trajectories [30].

Various examples in the recent literature illustrate the crucial role of automated particle tracking methods in
discovering new biological phenomena. Computerized analysis of fluorescent speckle microscopy (FSM)
movies of migrating cells have revealed that the protrusive behavior of the plasma membrane at the leading
edge during migration is mediated by two spatially colocalized but kine(ma)tically and molecularly distinct
actin networks related to the lamellipodia and the lamella, respectively, where the former appear to serve an
exploratory function while the latter are responsible for actual cell advancement [82]. Automated tracking
and motion analysis of virus-like particles on the surface of tissue culture cells has provided new insights
into the mechanisms involved in virus/receptor confinement before internalization [83]. Tracking of hu-
man immunodeficiency virus-1 (HIV-1) complexes have revealed directed movements characteristic of both
microtubule- and actin-dependent transport within the cytoplasm towards the nuclear membrane, which con-
tributes to the understanding of the cellular factors cooperating with or restricting HIV-1 infection [84]. As
a final example, it has been shown by single particle tracking that to a large extent, the mobility of protein
assemblies within the cell nucleus correlates with the compaction of chromatin [85].

4 From Cells to Organisms

One of the major goals of biological research in our postgenomic era is to gain full understanding of the pro-
cesses by which the genome directs the development of a single-cell zygote into a multicellular organism.
Complete knowledge of the gene regulatory networks giving rise to specific phenotypes will dramatically
advance the discovery of drugs and, ultimately, the development of clinical therapies. Model organisms
such as the nematode wormCaenorhabditis elegansand the zebrafish are now widely used to study de-
velopmental phenomena efficiently. However, the imaging and quantification of every cell cleavage and
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every cell-cell interaction in an entire developing organism, as well as the phenotypical characteristics and
behaviors of adult organisms, pose enormous challenges in terms of both image acquisition and image anal-
ysis [86–89]. Concerning the latter, it is safe to say that such studies constitute the ultimate test cases for
automated tracking and motion analysis methods. Nevertheless, recent literature has shown first successes
in the development and application of new methods for this purpose.

4.1 Tracking Embryogenesis

The indispensability of computational tools for studying embryogenesis quantitatively has already been rec-
ognized for some time. Interactive computer-assisted systems facilitated the segmentation, reconstruction,
visualization, and motion analysis of every cell and nucleus in a developing embryo [90, 91], but required
substantial manual effort in tracing and editing contours, limiting the practical use of these systems to the
very early stages of embryogenesis. Automation of cell tracking in these stages is possible by applying
basic image filtering techniques for cell segmentation and using spatial distance or the degree of cell overlap
between image frames for cell association [86]. However, problems easily occur at later stages, due to the
rapidly increasing number of cells and the cell density (Fig. 3).

In the endeavor to track embryogenesis much further down the line, alternative methods have been devel-
oped, based on fitting spherical models for segmentation and using heuristics about the shape and size of the
nuclei at the various stages of the cell cycle to disambiguate potential matches between time frames [92,93].
The use of additional cues is of crucial importance when tracking densely packed cells through mitosis,
when the telophase daughter nuclei are sent to the distal ends of the cell, and the two newborn cells may eas-
ily end up being closer to neighboring cells than to the mother cell in the previous frame. Several methods
were recently developed for tracking and lineage construction of cultured cell populations [44, 94] which
may also prove useful for tracking embryogenesis. In line with the foregoing sections, especially the use of
contour models, motion models, and probabilistic filtering schemes [44] can be expected to add considerably
to the much-needed robustness of cell tracking for this application.

4.2 Tracking Organism Behavior

In order to get a full picture for genotype-phenotype mapping, quantitative studies of the development of
an organism from the single cell stage to maturity must be complemented by analyses of the behavioral
(ab)normalities of the adult subjects. This brings us to yet another (and in this article final) level of spatial
and temporal observation, with its own peculiarities requiring special attention (Fig. 3). In the case of
C. eleganstracking, on which we will focus in the sequel, a large (inter- and intra-subject) variability in
appearance and behavior may be observed. For robust geometric modeling, it has been proposed [95] to
make a distinction between the principal shape (the resting width-profile, length, and body orientation), and
the conformation (bending patterns or curvature profiles) of the worms.

The use of standard stereo dissecting microscopes for worm tracking usually results in fairly high-contrast
images, so that simple intensity thresholding can be used to segment the subjects from the background. Con-
venient centerline representations of the worms can then be easily obtained by applying “skeletonization”
algorithms from mathematical morphology [96–98] or by using curve fitting procedures [95]. The segmen-
tation and association tasks become more difficult, however, when studying multiple worms simultaneously
for social behavior, where subject interactions, overlaps, or complex entanglements may occur. In addition,
to be able to distinguish forward from backward movement, the head and tail need to be identified. Here
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Figure 3 Organism tracking. (A-C) Volume renderings of three time points (3D image stacks) from a
time-lapse fluorescence microscopy data set, showingC. elegansembryogenesis from the four-cell stage
to approximately one and two hours later, respectively. The rapidly increasing number of cells and cell
density pose a real challenge for automated cell tracking. (D) Result of 3D segmentation (only one plane is
shown here) obtained by applying a level-set based model-evolution algorithm and morphological postpro-
cessing to the stack rendered in (C). (E) Tracking results can be conveniently summarized and presented
(after completion or even in the process) using lineage trees, which give a clear picture of mother-daughter
relations of cells, division times, and symmetry breaking events. (F) Single frame from time-lapse image
data acquired using a dissecting microscope and showing the morphological and behavioral phenotypes of
an adult worm. (G) Owing to the high contrast in the image, the worm body can be accurately segmented
using intensity thresholding, and simple morphological operations subsequently yield the outer contour
and centerline (“skeleton”). (H) Finally, a variety of morphological features, such as body diameter and
curvature, can be easily computed at any position along the extracted centerline.

too, similar to cell and particle tracking, the trend in the development of more robust tracking methods is in
the direction of model-based and probabilistic estimation approaches [95].

4.3 Organism Tracking in Practice

For the presentation of the deluge of information resulting from exhaustive cell tracking during embryogene-
sis, cell lineage trees (Fig. 3) can be very helpful. Such trees not only offer a convenient visual impression of
mother-daughter relations of cells, they also give a clear picture of division times, (a)synchronous divisions,
symmetry breaking events, and even (by color coding) of gene expression levels, for which quantitative
metrics can be computed straightforwardly. However, in order for lineage related analyses to make biologi-
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cal sense, the reconstructed trees need to be flawless. Since a single tracking error will invalidate the entire
corresponding subtree, this imposes extremely high demands on the accuracy and robustness of cell tracking
algorithms. Because even state-of-the-art algorithms are not quite error-free, careful manual curation and
postediting of the resulting trees will always be necessary. Several software tools for visualizing, editing,
and comparing cell lineage trees are publically available [99,100].

For the quantification of adult morphological phenotypes, geometrical features such as body length, area,
thickness, symmetry, and curvature can be easily extracted upon successful segmentation [96]. As for
behavioral phenotypes,C. eleganslocomotion can be roughly classified into forward movement, backward
movement, rest, and curl, the duration and change-rates of which are important parameters [98]. Automated
tracking systems have been successfully used for quantifying a variety of morphological and behavioral
patterns under controlled conditions (summarized in [96]). The statistical clustering of phenotypic patterns
and their matching with genotypic classes and environmental conditions will yield new insights into the
different mechanisms driving organism development and how to influence them beneficially.

5 Conclusions

In concluding this article, we summarize the most important observations and their implications for future
research. First, in view of the data explosion that is currently taking place in cell and developmental biol-
ogy, it is increasingly realized that powerful software tools are now essential on the road to discovery and
breakthrough. The massive change in scale of biological investigations not only calls for efficient solutions
for data management, but also requires computational methods for objective and reproducible processing,
analysis, and interpretation of the data. While the first challenge has already resulted in open standards for
storing and sharing image and meta data, the problem of how to best automate the actual “data crunching”
is still being vigorously researched by many groups worldwide, and in this article we have attempted to
provide the reader with a good overview of recent efforts in the field to develop methods for tracking and
motion analysis of objects in time-lapse microscopy image data.

Second, the exponential growth of publications in the past few years on bioimage informatics related prob-
lems is not just a testimony of the utter need for and the development of computational tools, but also of
the fact that the field is still very much in an exploratory phase. The general conclusion emerging from the
current body of literature seems to be that there are no universal solutions to tracking problems in cell and
developmental biology, and that tools pretending the existence of such solutions (such as many commercial
software packages) generally show mediocre performance. This is understandable by realizing that, espe-
cially in developmental experiments, one must be concerned with the analysis of events at the molecular
level (nanometer scale), the cellular level (micrometer scale), up to the organism level (millimeter scale),
that is at least six orders of spatial (not to mention temporal) detail, each with its own idiosyncrasies. How-
ever, the advent of whole-body scanners for fluorescence and bioluminescence tomography imaging, and
the desire to be able to quantify (sub)cellular processes within intact organisms, will push the demand for
integrated methods capable of tracking motion at all relevant scales simultaneously. Currently, several trends
can be observed in the development of new tracking methods, including the increasing use of models (of
object shape and dynamics as well as image formation) and probabilistic (Bayesian) estimation methods,
which are known from other fields to yield improved robustness.

Finally, since every specific tracking problem currently requires its own dedicated solutions to optimally
extract and exploit the information contained in the data, investigators are constantly faced with the chal-
lenge to develop their own software tools. This is increasingly possible, even for users without expertise
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in computer programming, by means of commercial and open-source tools facilitating the assembly of ex-
isting image processing algorithms and the integration of custom-designed algorithms. However, biology
has by now unquestionably developed into a multidisciplinary field, and it seems that the joint optimiza-
tion of all aspects of biological experimentation (sample preparation, image acquisition, image analysis,
data modeling, and statistics) is best achieved by a close collaboration between biologists, chemists, physi-
cists, mathematicians, statisticians, as well as computer scientists, all the way from experiment planning
to the ultimate interpretation of the results. Academic environments and research programs fostering this
collaboration will likely prove to be the main contributors to progress in biology.
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