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ABSTRACT

Biological imaging studies into the molecular mechanisms
and underlying structures of intracellular dynamic processes
require not only accurate particle tracking but also accurate
analysis of the resulting trajectories. Although great efforts
have been made to solve the particle tracking problem, there is
a lack of methods for robust estimation of dynamic properties
from extracted trajectories in the presence of measurement
noise, or when particles exhibit jerky motion patterns. Here
we propose a hierarchical energy-based trajectory smoothing
approach for this purpose. It yields a parametric curve having
second-order continuity that allows robust local estimation of
dynamic properties requiring up to second-order derivatives
at any point along the underlying trajectory. We present pre-
liminary results of experiments on both synthetic and real data
of microtubule dynamics demonstrating the advantage of our
method over trajectory representations using piecewise-linear
connection or Gaussian-process regression.

Index Terms— Trajectory analysis, particle tracking, mi-
crotubule dynamics, parameter estimation.

1. INTRODUCTION

Analyzing dynamic properties and underlying spatial struc-
tures of moving intracellular objects such as microtubule
(MT) tips or vesicles in time-lapse microscopy images is of
major interest to many biological studies [1]. An example
from our own ongoing research is the study of new chem-
ical compounds for developing novel MT-active drugs that
deregulate MT dynamics and prevent mitosis of cancerous
cells. This requires robust automated particle tracking and
trajectory analysis tools capable of dealing with noisy image
data and accurately estimating MT dynamics parameters for
assessing drug effectiveness.

Despite great efforts to develop accurate tracking meth-
ods [2, 3], particle localization precision is inevitably limited
due to imaging noise, confounding the underlying structures

along which particles move. Moreover, trajectories are often
represented simply by piecewise straight lines between detec-
tions, further limiting the accuracy of subsequent analyses [4].
Better results have been obtained recently by using more so-
phisticated methods such as higher-order B-spline interpola-
tion or Gaussian-process (GP) regression [5]. However, they
treat the coordinates independently and rely on the temporal
ordering of detections within a trajectory, which in the case
of sharp turns may result in overshoots, loops, and unrealisti-
cally high curvatures (Fig. 1).

Here we propose a fully adaptive hierarchical energy-
based trajectory smoothing method that treats trajectory co-
ordinates jointly as a geometric curve and does not require
temporal ordering of detections. The method produces a
curve with geometric G

2 and parametric C

2 continuity rep-
resented by a set of Hermite polynomials. The strain energy
is regularized by penalizing the stretching and bending of
the curve, both of which can be related to actual physical
properties of the modeled biological structures, and is min-
imized using quadratic programming. Using the proposed
curve representation, properties of interest (curvature, normal
and tangent directions, et cetera) can be computed analyti-
cally from the resulting curve model, without the need for
numerical finite-difference methods.

2. METHOD

2.1. Problem Definition

The proposed method models curves as elastic beams un-
der the application of spring forces. Here, a curve is rep-
resented in parametric form using Hermite polynomials, al-
though Bernstein polynomials or B-splines could also serve as
a basis. For a trajectory consisting of Nt points {(x̃t, ỹt)}Nt

t=1,
the sought smooth approximating parametric curve L = L(u)
is defined by Ne cubic Hermite elements {ek}Ne

k=1, where

ek =


xk(u)
yk(u)

�
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Fig. 1. Single frame from an image sequence depicting jerky mo-
tion of fluorescently labeled MT ends at 28�C and one typical (160
frames long) trajectory (yellow overlay). Two estimates of the MT
structure obtained with GP regression (using different parameters)
exhibit unwanted undulations (green overlays, translated for better
visibility). The proposed method estimates the MT as a smooth
structure (cyan overlay, where perpendicular lines indicate the am-
plitude of the curvature along the MT, and different colors represent
different elements of the approximating curve).

and Q = {(xk
1 , . . . , x

k
4 , y

k
1 , . . . , y

k
4 )}Ne

k=1 is the set of param-
eters representing the degrees of freedom of the curve, which
defines the coordinates of the beginning and the end of the el-
ements ek, respectively (xk

1 , y
k
1 ) and (xk

3 , y
k
3 ), and the values

of the corresponding first derivatives, (xk
2 , y

k
2 ) and (xk

4 , y
k
4 ).

The Hermite basis functions are defined as

�1(u) = 1� 3(u/h)2 + 2(u/h)3 (2)

�2(u) = h(u/h� 2(u/h)2 + (u/h)3) (3)

�3(u) = 3(u/h)2 � 2(u/h)3 (4)

�4(u) = h(�(u/h)2 + (u/h)3) (5)

where h is the scale parameter (0  u  h). Each element
ek has its own scale parameter hk. Since all Ne elements
are sequentially connected, there is a set of Ne � 1 linear
geometric constraints: xk

3 = x

k+1
1 , xk

4 = x

k+1
2 , yk3 = y

k+1
1 ,

y

k
4 = y

k+1
2 , k = 1, . . . , Ne � 1, which reduces the number of

degrees of freedom to 4(Ne + 1).
Reconstructing a smooth curve from a set of trajectory de-

tections is an ill-posed inverse problem, because the unique-
ness and stability of the solution are not guaranteed with-
out additional constraints. Therefore, we employ smoothness
constraints based on curve derivatives, which turn the curve
fitting into a well-posed energy minimization problem:

E(L) = Edata(L) + Esmooth(L) =
NtX

t=1

�tD((x̃t, ỹt), L)
2+

NeX

k=1

✓Z
↵ ke0kk2 + �ke00kk2 + �ke000k k2du

◆
(6)

where ↵, �, � and �t are nonnegative weights, and the dis-
tance metric D is defined as the shortest Euclidean distance

from the object detection to the curve L [6]. The first term
controls the fidelity to the data and the second term (potential
energy of the curve) controls the smoothness of the solution.
The weight �t can be used to accommodate the localization
accuracy of the object detector and thereby deal with outliers
or imprecise detections. The squared first derivative stands
for the strain energy due to stretching of the beam, and the
squared second derivative stands for the strain energy due to
bending. The third derivative does not have a physical anal-
ogy but is related to the rate of change of the curvature. Mini-
mizing the integrals in (6) forces the curve to stretch and bend
as little as possible. In the case of Hermite polynomials, these
integrals can be analytically computed by substituting (1), and
rewriting the energy Esmooth(L) as

Esmooth(L) =
NeX

k=1

4X

i=1

4X

j=1

ij(x
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i x
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j ) = QTKQ (7)

where ij = 

↵
ij + 

�
ij + 

�
ij are the elements of the stiffness

matrix K = K↵ +K� +K� [6].

2.2. Solving the Nonlinear Optimization Problem

Minimizing the energy in (6) to obtain the smooth curve L

is a nonlinear optimization problem that can be solved us-
ing successive quadratic programming (SQP) [6]. Here, the
quadratic subproblem at each iteration j = 0, 1, . . . is defined
as the minimization (until convergence) of

Ê(d,Q(j)) = dTKd+rE(Q(j))Td+ 1
2d

Tr2E(Q(j))d
(8)

using the update vector d = Q � Q(j). This approach re-
sults in L having geometric continuity G

1 (the curve elements
share the tangent direction at the joints) and parametric con-
tinuity C

1 (the first parametric derivatives are continuous).
But in order to have a continuous estimate of the curvature,
L should be G

2 continuous, and to have a continuous esti-
mate of object acceleration within a trajectory, L should also
be C

2 continuous (the one does not necessarily imply the
other). To enforce this while at the same time avoiding higher-
order polynomials (which are computationally more costly),
we constrain the second derivatives:

d

2
ek
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2
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2
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u=0

(9)

for all k = 1, . . . , Ne � 1. This makes the updates d to be C

2

continuous but not the whole curve described by Q. Thus it is
important to use an initialization Q(0) that is C

2 continuous.
In this setup, C

2 implies G

2 continuity.
The scale parameters hk pertaining to the ek influence the

“flexibility” of L in different parts of the curve. Ideally, to
avoid overparametrization of the curve, we would like to have
as few elements ek as possible, with “optimal” hk. Unfor-
tunately, treating the hk as extra parameters in the process
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Fig. 2. Illustration of the proposed iterative procedure. (a) The aim
is to obtain a smooth parametric curve (blue) from a noisy trajectory
(gray). (b-c) For each iteration, the dashed lines represent initial-
izations, and the solid curves represent the improved estimates after
the optimization step (here only two colors, green and red, are used
to label different elements). After a series of optimization steps (d),
partitioning is applied to merge some of the elements and create a
curve with an “optimal” number of elements (e).

leads to an intractable optimization problem with no unique
solution, unsuitable for SQP. Therefore we propose to use a
hierarchical fracturing approach.

2.3. Initialization and Hierarchical Fracturing

The proposed hierarchical approach initializes the curve L us-
ing two elements, L(0) = {e(0)1 , e

(0)
2 } with scale parameters

h

(0)
1 = h

(0)
2 , which form a straight line connecting the first

and last points of a trajectory (Fig. 2b). For each next iter-
ation j = 1, . . . , Niter, after running the SQP optimization,
each curve element e(j�1)

k , k = 1, . . . , N (j�1)
e , is split into

two, if the length of the element h(j�1)
k � 2hmin (Fig. 2c).

After each iteration, the scales h

(.)
k are renormalized to sum

up to the curve length. The procedure stops when either a pre-
defined number of iterations, Niter, is reached, or none of the
curve elements can be split anymore (Fig. 2d).

In general, splitting an element e(j)k straightforwardly into
two, e

(j+1)
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and e

(j+1)
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L at the split point. To alleviate this problem, the parameters
x
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4 , xk2
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4 , yk2
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2 should be recom-
puted by solving a system of constraining equations:
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which leads to a unique solution. Each subsequent splitting
provides a more and more accurate initialization for the opti-

mization algorithm in the next iteration, speeding up the over-
all curve estimation process.

2.4. Optimal Partitioning of Curve Elements

The result of the hierarchical optimization is the curve L =
{e1, . . . , eNe}, Ne  2Niter+1, consisting of multiple small
Hermite elements which may heavily overparameterize sim-
ple (straight, short, low-curvature) trajectories. In the final
step, we seek a more concise representation by combining
some of those elements into longer segments (Fig. 2e) while
preserving the achieved minimal energy E(L). To this end
we employ a powerful algorithm [7] that searches the expo-
nentially large space of partitions of N data points (curve seg-
ments ek in our case) with complexity O(N2). The algorithm
is guaranteed to find the global minimum for any energy (fit-
ness) function that is additive in the sense of (6) and automat-
ically determines the number of elements.

The partitioning algorithm replaces blocks of several con-
secutive elements of L, ek, ek+1, . . . , ek+n, k � 1, k + n 
Ne, with one ês, so that E(ês)  E(ek, ek+1, . . . , ek+n).
In the final partitioning, L̂ = {ê1, . . . , êN̂}, the elements ês

do not share any of the ek. By initializing the parameters of ês
using the values of xk

1 , x
k
2 , y

k
1 , y

k
2 and x

k+n
3 , x

k+n
4 , y

k+n
3 , y

k+n
4

we would again break the C

2 continuity of L. To preserve this
desired property, we propose to use a higher-order represen-
tation, based on quintic Hermite polynomials. Compared to
the cubic case this involves two extra basis functions (�5(u),
�6(u)) and four extra parameters (x5, y5, x6, y6) that explic-
itly define the second-order derivatives of a quintic curve
element at both ends (u = 0 and u = h) [6]. Reparameter-
izaton of L from cubic to quintic Hermite representation is
straightforward and preserves the value of E(L).

To make the final curve representation even more con-
cise, we use an extra energy term in the partitioning process,
which corresponds to the Akaike information criterion. It
leads to the following fitness constraint during the grouping
of the mentioned curve elements into blocks of L̂: E(ês) 
E(ek, ek+1, . . . , ek+n) + 2npar, where the number of param-
eters in our case is npar = 6(n + 1). This way, the final
partitioning L̂ favors a smaller number of elements at the cost
of having a slightly higher value of E(L̂).

With the final representation L̂, the estimation of all de-
sired parameters such as trajectory length, average speed, tan-
gent and normal components of motion at any point of the tra-
jectory, including curvature and other derived measures, can
be easily (and in most cases analytically) computed.

3. RESULTS

3.1. Evaluation on Synthetic Data

The proposed method was first evaluated for speed estima-
tion using the trajectories from the Particle Tracking Chal-
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Fig. 3. Polar histogram of the magnitudes and angles (relative to the
tangents of L) of the displacement vectors of trajectories. Results are
shown for (a) synthetic data (exhibiting processive motion only) and
(b) real data from experiments with MTs at 28�C (demonstrating the
presence of both processive and retrograde motion).

lenge [2], specifically Scenario 2, which mimics processive
motion of MTs. Speed estimates VH were computed for 2,000
trajectories as spatial trajectory length divided by duration,
and compared with speed estimates VGP (computed using GP
regression), and VCUM (cumulative displacement divided by
duration) [5]. The resulting estimates were not very sensi-
tive to the values of the free parameters, which were fixed to
↵ = 1, � = 1, � = 0.1, �t = 1, hmin = 3 pixels, and
Niter = 6. In the case of a perfect object detector, which
estimates object locations without errors (�d = 0), the av-
erages were (all in pixels/frame) V̄H = 5.25 ± 0.63, V̄GP =
5.26±0.68, V̄CUM = 5.29±0.64, with the ground truth value
VGT = 5.22± 0.69. For a more realistic case (�d = 2 pixels),
the averages were V̄H = 5.43 ± 0.68, V̄GP = 5.61 ± 0.63,
V̄CUM = 6.22 ± 0.61, with VGT = 5.23 ± 0.68. This demon-
strates that in the case of trajectories without retrograde or
jerky motion (Fig. 3a), the proposed method performs as good
as or better than the state of the art methods.

3.2. Evaluation on Real Data

To evaluate our method for real applications, we studied the
dynamics of wild type MTs, tagged with fluorescent EB3-
GFPs at different temperatures (28�C and 40�C, see also
Fig. 1), and imaged using a spinning disk confocal micro-
scope. We acquired five image sequences per condition,
each sequence containing ⇠ 300-700 MTs, whose trajectories
were extracted using our MT tracking method [2]. At 40�C,
MTs behave as in the case of our synthetic data (Fig. 3a),
exhibiting only processive motion with similar distribution
of displacements. In this case the speed estimates are in a
good agreement with the GP method: V̄GP = 2.52± 0.82 and
V̄H = 2.45±0.78. At the lower temperature, MTs exhibit a lot
of retrograde motion (Fig. 3b), resulting in overestimation of
speed using GPs: VGP = 1.13±0.57 versus V̄H = 0.56±0.65,
the latter of which is more accurate according to our experts.

4. DISCUSSION

In this paper we have proposed a fully automated hierarchical
curve fitting method for estimating the dynamics of intracellu-
lar objects such as MT tips and their underlying MT structure.
Contrary to previous trajectory smoothing methods based on
cubic B-spline approximation or Gaussian Process regression
[5], which require temporally ordered detections, our method
is able to better estimate properties of the trajectories of ob-
jects showing retrograde or jerky motion. The parametric rep-
resentation of the obtained curves allows for fast and accurate
computation of object speed, trajectory length or curvature,
projection of displacements, et cetera. An important advan-
tage of the proposed method is that the estimated parametric
curve enables us to characterize object motion along the curve
accurately on a very local scale. For example, by extracting
the displacement angles and projections onto the tangent di-
rections, we can accurately quantify the proportion of pro-
cessive and retrograde motion (Fig. 3). The method shows
favorable results in our evaluations using synthetically gen-
erated trajectories from the Particle Tracking Challenge [2]
as well as real data of the behavior of wild-type MTs at dif-
ferent temperatures. Although presented here for 2D+t ap-
plications, the proposed approach applies straightforwardly
to 3D+t applications. Currently, we are working on an ex-
tension of the method using advanced geometric multimodel
fitting approaches [8]. This will make it possible to perform
simultaneous fitting of multiple curves into single molecule
data and reconstructing spatial structures such as actin fila-
ments, microtubules, and neurites.

5. REFERENCES

[1] N. Galjart, “Plus-end-tracking proteins and their interactions at micro-
tubule ends,” Current Biology, vol. 20, no. 12, pp. R528–R537, 2010.

[2] N. Chenouard et al, “An objective comparison of particle tracking meth-
ods,” Nature Methods, vol. 11, no. 3, pp. 281–289, 2014.

[3] I. Smal and E. Meijering, “Quantitative comparison of multiframe data
association techniques for particle tracking in time-lapse fluorescence
microscopy,” Medical Image Analysis, vol. 24, no. 1, pp. 163–189, 2015.

[4] Y. Yao, I. Smal, I. Grigoriev, M. Martin, A. Akhmanova, and E. Meijer-
ing, “Automated analysis of intracellular dynamic processes,” Methods

in Molecular Biology, vol. 1563, no. 14, pp. 209–228, 2017.

[5] I. Smal, S. Basu, L. Sayas, N. Galjart, and E. Meijering, “Gaussian pro-
cesses for trajectory analysis in microtubule tracking applications,” in
Proceedings of the IEEE International Symposium on Biomedical Imag-

ing: From Nano to Macro, 2017, pp. 206–209.

[6] L. Fang and D. Gossard, “Multidimensional curve fitting to unorganized
data points by nonlinear minimization,” Computer-Aided Design, vol.
27, no. 1, pp. 48–58, 1995.

[7] B. Jackson, J. D. Scargle, D. Barnes, S. Arabhi, A. Alt, P. Gioumousis,
E. Gwin, P. Sangtrakulcharoen, L. Tan, and T. T. Tsai, “An algorithm
for optimal partitioning of data on an interval,” IEEE Signal Processing

Letters, vol. 12, no. 2, pp. 105–108, 2005.

[8] H. Isack and Y. Boykov, “Energy-based geometric multi-model fitting,”
International Journal of Computer Vision, vol. 97, no. 2, pp. 123–147,
2012.


