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ABSTRACT

Myocardial tagging in magnetic resonance imaging (MRI)

has shown great potential for noninvasive measurement of the

motion of a beating heart. A critical issue in exploiting this

technology in practice is the availability of robust and accu-

rate methods for tag tracking. In this paper we quantitatively

evaluate and compare four motion analysis methods that are

frequently used in practice, based on optical flow, harmonic

phase MRI, B-snake grids, and non-rigid registration tech-

niques. Experiments on realistic synthetic images and data

from three different (pre)clinical experiments show that non-

rigid registration methods yield the highest accuracy and ro-

bustness among the considered methods.

Index Terms— Optical flow, non-rigid registration,

HARP, motion analysis, tracking, tagged MRI.

1. INTRODUCTION

Myocardial tagging using magnetic resonance imaging (MRI)

is a well-known noninvasive method for studying regional

heart dynamics. It offers great potential for quantitative anal-

ysis of a variety of kine(ma)tic parameters that can be used

for identification of ischemic and infarcted tissues. Tagging

involves the selective magnetic saturation of a plane orthogo-

nal to the final image plane before the standard spin-echo se-

quence [1]. In the images, tags appear as dark lines (compared

to the bright myocardium, see Fig. 1), which move along with

the tissue and allow motion quantification of specific areas of

the myocardium. The tag pattern amplitude decays with time

due to T1 relaxation. It is known from the imaging protocol

that tag lines, which are typically about 1 pixel thick, have an

approximately Gaussian intensity profile [2], and the images

are corrupted by Rician measurement noise.

The analysis of tagged MR images commonly consists of

three tasks [2–6]. First, the endocardial and epicardial con-

tours of the left ventricle (LV) are defined either manually or

with semi-automated algorithms [2]. Second, the tag lines are
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Fig. 1. Examples of images from studies of human hearts, with frames 1, 10,

and 20 (out of 20 per heart cycle) clearly showing the tag fading.

automatically segmented in every image of the sequence. In

most cases, the line intersections are used as feature points

during the tracking. Third, the tag line positions are used to

either fit a parametrized model of cardiac displacement [3], or

to reconstruct a dense displacement field [7] from sparse mea-

surements using interpolation techniques based on thin-plate

spline or B-spline models [4, 6].

The process of identifying and tracking tag intersections

manually, to analyze the relative motion of tags and calcu-

late local strain and rotation, is time consuming and laborious.

Several computerized methods for motion analysis in tagged

MRI (tMRI) have been proposed in the literature [2–6], but a

thorough comparison of their relative performance has been

lacking. To establish the performance baseline, we compare

four existing and conceptually different automated tracking

approaches that are frequently used in practice for motion

analysis in tMRI. The experiments are based on both realistic

synthetic data with known ground truth, as well as real data

from three different (pre)clinical studies, and aim to demon-

strate the strong and weak points of each method using the

same standardized image data.

2. TRACKING METHODS

The four tracking methods compared in this paper, based on

optical flow, harmonic phase MRI, B-spline grids, and non-

rigid registration methods are briefly described next. All of

them do not require indication of LV contours and produce

a dense displacement field, which can be used to obtain the



deformation gradient tensor, and to compute any concise de-

scription of regional cardiac kinematics.

Optical flow (OF) methods for tag tracking [8, 9] assume

that the intensity of image structures is constant under mo-

tion, at least for a short duration, which is admissible if the

image frames are separated by short time intervals as com-

pared to T1 recovery (the T1 signal modulation may also be

incorporated in the framework [9] if needed). These meth-

ods do not require explicit modeling of tag appearance, but

do require the displacements between successive frames to be

relatively small, as they are measured by taking local deriva-

tives. Here, we used total variation (TV) regularization of the

OF displacement fields, which accounts for anisotropic noise

removal and edge preservation, and recently was successfully

used for motion estimation in tMRI [8].

Harmonic Phase MRI (HARP) [10] is another frequently

used and commercially available (Diagnosoft R©HARPTM)

technique, based on the fact that tagged MR images show

distinct spectral peaks in the Fourier domain, each of which

contains information about the motion in a certain direc-

tion [10]. The inverse Fourier transform of each peak, ex-

tracted by a bandpass filter, gives a complex image, whose

phase is linearly related to a directional component of the

myocardial motion, but “wrapped” in the range [−π, π). Ev-
ery point in the image is characterized by two HARP angles,

corresponding to two orthogonal displacement components.

Tracking proceeds from frame t to t + 1 by finding a corre-

sponding point that shares the same HARP angles. HARP

is fundamentally capable of tracking arbitrary points in the

image, but is prone to errors at points near the myocardial

boundary, where tag fading and non-myocardial background

structures may cause erroneous linking of points that coinci-

dentally have the same pair of HARP angles.

B-snake grids (BSG) is an alternative approach, based on

active contour models (“snakes”), that aims at tracking tag

lines [3, 6]. The grids are constructed by having horizontal

and vertical curves (represented by B-splines) share control

points, where the individual movement of control points has

only local effect, so that local tissue deformations can be cap-

tured without affecting other parts of the curve. The number

of control points is usually much smaller than the sampling of

the curve on the pixel grid. The grid deforms (by optimizing

the control points) to align with the low image intensity points

(corresponding to tag lines). The estimated grid in one frame

is then taken as the initial configuration for the next frame.

Optimization is typically done with the nonlinear conjugate

gradient method or quasi-Newton algorithms.

Non-rigid registration (NRR) methods, which also have

been applied to tracking and motion analysis [11, 12], aim at

finding an optimal transform Tt, which spatially aligns every

image It with a reference image (in our case the first image

of the sequence). To capture the local transformation of the

myocardium, free form deformation (FFD) models based on
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Fig. 2. Examples of synthetic images (Type A) used in our experiments:

the initial noise-free image of the tagged annular object (a), and zoomed im-

age regions that demonstrate the modeled tag and myocardium appearance

for different SNR levels, which correspond to 18.06 dB (b), 12.04 dB (c),

8.51 dB (d), and 6.02 dB (e).

B-splines [12] are used (similar to BSG), which produce a

smooth and continuous transform Tt. To measure the degree

of alignment between two images, we used mutual informa-

tion (MI), a well-known and robust similarity measure. The

cost function associated with the transformation parameters

can be optimized using an iterative optimization method such

as the quasi-Newton, conjugate gradient, or stochastic gradi-

ent descent methods, usually in a multiresolution setting [13].

Robustness and accuracy are improved by initializing the reg-

istration between the reference image and It at time twith the

transformation obtained at t − 1. In our implementation the

optimization was done using the adaptive stochastic gradient

descent method and a 4-level multiresolution strategy.

3. EXPERIMENTAL RESULTS

Evaluation on Synthetic Image Data. The performance of

the methods was first evaluated using realistic synthetic im-

age data. Two types of synthetic images, for which the ground

truth was available, were used to assess accuracy and robust-

ness as a function of the signal-to-noise ratio (SNR) of the

data. The first (Type A) consisted of a sequence of 24 im-

ages (256 × 256 pixels) and modeled motion (radial expan-

sion and contraction) of an annular object with an outer radius

rext = 80 pixels, and inner radius rc = 50 pixels, similar

to [14, 15]. The intensity levels of the modeled myocardium

and tagging, and the level of the Rician noise, were chosen to

simulate data with SNRs in the range 6-18 dB (Fig. 2).

As the second type (Type B) of synthetic data we used the

previously reported computational phantom [11]. This phan-

tom (Fig. 3) models more complex motion, where in addition

to radial expansion and contraction, also rotation is consid-

ered to realistically simulate left ventricular motion through

the cardiac cycle. For both types of data (A and B), we addi-

tionally modeled the fading of the tag pattern during a heart

cycle, as typically observed in practice. Exponential decaying

of the tag amplitude was used to produce image sequences,

where the SNR changed from 18.06 dB (in the initial frame)

to 6.02 dB (in the last frame of the sequence).

The parameters for each method were manually optimized

for best performance. The accuracy of tag position estimation

was measured using the root mean square error (RMSE), aver-

aged for each method over NR independent runs on the syn-

thetic data with different noise realizations (we used NR =
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Fig. 3. Example of synthetic data (Type B) with time-varying SNR level that

models the tag fading: the highest SNR = 18.06 dB (a) exponentially decays

through the sequence to the lowest SNR = 6.02 dB (c).
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Fig. 4. Examples of the error (“heat”) maps produced by each method for

Type B data. The intensity values represent the absolute error (in pixel units)

between the measured and the ground truth displacement for each point of the

myocardium. Results are given for the lowest SNR (6.02 dB) for the frame

(Type B data) where the largest deformations occurred.

5). Additionally, the image sequences were manually anno-

tated by 3 independent observers. The results for each method

as well as for manual tracking are shown in Tables 1 and 2.

Examples of typical errors produced by each method in a sin-

gle experiment for Type B data are shown in Fig. 4.

The OF-based method demonstrated high sensitivity to

SNR changes and produced the largest RMSE (together with

BSG). High noise levels complicated the estimation of image

derivatives, which the method is based on. Independently of

the data type and SNR, the largest errors always occurred at

the boundaries of the modeled myocardium (Fig. 4(a)), where

the estimation of the intensity derivatives is extremely prone

to errors, especially in the case of large boundary displace-

ments (fast expansion or contraction).

The HARPmethod performed relatively well, even for the

lowest SNRs considered in this study. The RMSE was either

comparable to or lower than the error made by manual anal-

ysis (Table 1). As known from literature, and confirmed by

our experiments, HARP is accurate within the myocardial re-

gion and generates errors mainly at the boundaries (Fig. 4(b)),

where it fails to find tags with corresponding HARP angles in

subsequent HARP images. Most of the time, the method pro-

duces small and rather isolated “islands” of large errors in the

regions close to the myocardial boundaries.

The performance of the BSG method varied consider-

ably depending on SNR. For high SNRs, BSG outperformed

HARP, but for low SNRs and more complex data (Type B), it

performed worse than OF. On average, the method correctly

tracked the tag lines, but in cases of large myocardial dis-

placement (on the order of the distance between tag lines),

there was a tendency to incorrectly put some curves in the

background, characterized by low image intensities (very

similar to the tag lines). Due to the coupling of neighboring

SNR 6.02 dB 8.51 dB 12.04 dB 18.06 dB

Type A (expansion)

OF 5.70±3.62 3.17±3.01 1.08±0.56 1.02±1.66

HARP 1.06±2.21 0.57±0.40 0.43±0.34 0.36±0.32

BSG 2.90±3.17 2.56±4.46 1.21±2.05 0.61±1.52

NRR 0.65±0.38 0.43±0.24 0.29±0.18 0.18±0.11

Manual 1.37±1.04 0.84±0.48 0.69±0.43 0.55±0.36

Type A (contraction)

OF 5.62±2.91 3.81±2.03 1.36±0.92 0.45±0.32

HARP 1.99±3.32 1.28±2.09 1.11±2.06 0.88±1.64

BSG 2.17±3.03 1.84±2.97 0.33±0.24 0.26±0.20

NRR 0.66±0.40 0.42±0.25 0.29±0.18 0.19±0.11

Manual 1.36±0.90 1.05±0.77 0.77±0.46 0.62±0.41

Type B (phantom)

OF 2.61±2.10 1.71±1.26 1.68±0.98 1.12±0.84

HARP 1.99±3.15 1.15±8.56 0.51±0.66 0.39±0.88

BSG 3.33±3.78 1.86±2.52 1.35±2.05 1.12±1.95

NRR 0.67±0.39 0.40±0.23 0.25±0.16 0.13±0.10

Manual 1.24±0.71 0.88±0.55 0.71±0.50 0.61±0.41

Table 1. Results of tracking accuracy assessment (RMSE as a function of

SNR) for Type A (expansion/contraction) and Type B data. The numbers

represent RMSE ± standard deviation, given in pixel units.

Type A (expansion) Type A (contraction) Type B

OF 1.27±0.85 0.80±0.66 1.46±1.19

HARP 0.58±0.60 1.64±3.08 1.17±1.79

BSG 7.42±9.31 2.60±6.96 9.63±7.99

NRR 0.18±0.11 0.19±0.14 0.34±0.27

Manual 0.70±0.44 0.62±0.39 0.64±0.38

Table 2. Results of tracking accuracy assessment (RMSE ± standard devia-

tion) for Type A (expansion/contraction) and Type B data with time varying

SNR level that models the tag fading.

control points of the B-splines and depending on the dis-

tance between the control points, such errors can affect large

regions within the myocardium.

The tracking method based on NRR, which also uses a

B-spline grid but with a cost function (mutual information)

that utilizes all available image information, contrary to min-

imizing the sum of intensity values only along the tag lines

(as in the case of BSG), demonstrated the highest accuracy

and robustness among the considered methods, for all types

of image data and all SNR levels.

Evaluation on Real Image Data. The experiments on real

tMRI data were done using the in-house clinical 3T MRI

scanner (GE Medical Systems). A SPAMM pulse sequence

was used to acquire image data in experiments on healthy and

diseased rats and pigs, and diseased human patients. Multiple

short-axis view images (of size 256 × 256 pixels) were col-

lected using the following imaging parameters (human-, rat-,

pig-related): repetition time (6.5, 13, 4) msec, echo time (3.1,
4, 1.25) msec, flip angle (12, 7, 11) degrees, slice thickness

(8, 1.6, 6) mm, spacing between slices (28, 1.6, 12) mm, pixel

size (1.48×1.48, 0.19×0.19, 1.25×1.25) mm2, frames per

heart cycle (20, 24, 20), number of slice positions (3, 7, 4),
tag spacing (11.5, 1.5, 6) mm, tag orientation 45◦ and 135◦.

Five tagged MR image sequences of each type (human,

rat, pig) were analyzed using HARP and NRR (two methods

that demonstrated the highest performance on synthetic data).



Human Rat Pig

HARP 1.65±1.73 1.36±0.93 1.43±1.35

NRR 1.23±1.02 1.33±0.84 1.12±0.84

Table 3. Results of tracking accuracy assessment (RMSE ± standard devia-

tion) using real data from human, pig, and rat studies.

Fig. 5. Tag trajectories obtained using the harmonic phase (HARP) method

(left) versus the non-rigid registration (NRR) method (right).

The algorithm parameters were fixed to the same values as in

the case of the synthetic data. As no ground truth was avail-

able for the real data, we measured the accuracy in compari-

son with manual tracking produced by experts (10 randomly

selected tags per sequence to limit the burden). The results

are shown in Table 3. Typical tracking results using NRR and

HARP are shown in Fig. 5.

Contrary to NRR, HARP could not cope with the poor

image quality, and produced many erroneous tracks: reliable

tag tracking was achieved only in the first 3-6 frames of the

image sequences (where the tags had not faded yet) or in re-

gions within the myocardium with sufficiently high SNR. The

results in Table 3 do not include these extremely erroneous

tracks, because of their absence in the manually annotated

data (it was extremely difficult and cumbersome even for the

human experts to track the myocardial boundary points). In

other words, the results in the table are biased towards tags

that could be tracked relatively well, and the differences be-

tween the methods would likely be much larger if all tags

could have been included.

4. CONCLUSIONS

In this paper we have evaluated four conceptually different

approaches to tag tracking for motion analysis in MRI, based

on optical flow, harmonic phase MRI, B-snake grids, and

non-rigid registration. The results of experiments on both

synthetic and real data revealed that non-rigid registration

yields the best tracking accuracy overall. The HARP method

demonstrated good performance only in high-quality image

data. The performance of the two other methods was less

consistent and highly dependent on image quality. Based on

these findings, our future work will focus on the extension of

our previously published Bayesian tracker [16], which will

use non-rigid registration as a prior model for heart dynamics.

The combined method is expected to improve the robustness

of the tracking and to further reduce the residual error of non-

rigid registration, due to explicit and more accurate modeling

of tag appearance and noise.
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