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ABSTRACT

Myocardial tagging using magnetic resonance imaging (MRI)

is a well-known noninvasive method for studying regional

heart dynamics. While it offers great potential for quantita-

tive analysis of a variety of kinematic and kinetic parame-

ters, its clinical use has so far been limited, mainly due to

mediocre performance of existing tag tracking algorithms un-

der poor imaging conditions. In this paper we propose a new

approach to tracking of MRI tag intersections. It is based on

a Bayesian estimation framework, implemented by means of

particle filtering, and combines information about heart dy-

namics, the imaging process, and tag appearance. Since at

any time point it optimally incorporates all available informa-

tion, it can be expected to be more robust and accurate. This is

demonstrated by results of preliminary experiments on image

sequences from (small) animal imaging studies.

Index Terms— Particle filtering, tracking, tagged MRI.

1. INTRODUCTION

During the last decades, myocardial tissue tagging with mag-

netic resonance imaging (MRI) has shown great potential for

noninvasive measurement of the motion of a beating heart.

In cardiac imaging, the major task is the analysis of cardiac

motion for identification of ischemic and infarcted tissues.

Contrary to methods that require implantation of radiopaque

beads or ultrasonic crystals, using spatial modulation of mag-

netization (SPAMM) [1] enables noninvasive measurement

of material displacement and deformation of myocardium by

tagging regions of the heart wall and following their motion

in subsequent images. With SPAMM, two orthogonal sets

of magnetic saturation planes, each orthogonal to the image

plane, can be created in short time (see Fig. 1), where the

intersection of the stripes provides two-dimensional informa-

tion about the displacement of material points.

The process of identifying and tracking tag intersections

manually, to analyze the relative motion of tags and calcu-
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Fig. 1. Examples of images from studies of pig hearts: untagged (left) and

tagged (right) MR images, single short-axis slices (Courtesy T. Springeling,

Erasmus MC).

late local strain and rotation, is time consuming and laborious.

Existing automatic techniques [2–7] are usually based on seg-

mentation/detection of tags separately in every frame using

variations of active contour models and are not robust enough

to deal with varying quality of typical experimental image

data. The alternative automatic technique based on harmonic

phase magnetic resonance imaging (HARP) [8] uses isolated

spectral peaks in the Fourier domain of MR tagged images

and analyzes the complex phase images, which can be treated

as material property and related to myocardial strain. With

these techniques, reliable tag tracking can mostly be achieved

only in the first few frames of the image sequence.

In this paper we propose a new particle filtering (PF)

based method for analysis of tagged MRI data. It is built

within a Bayesian estimation framework and combines the

information about the heart dynamics, the imaging process,

and tag appearance in tracking the tagging pattern. Addition-

ally, the information from all available images at any time

point is utilized, which improves the robustness and perfor-

mance of the proposed technique. The results of tag tracking

are used to reconstruct dense motion and strain fields.

2. METHOD

In the application under consideration, the main task is to

track the tag lines or line intersections (see Fig. 1) to ob-
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Fig. 2. Top row: example of initialization, where two LV contours define

the bounding box and a set of line intersections that are used for tracking

(left) and positioning of the observation models depending on the neighbor-

hood (right, θT = 45
◦). Bottom row: the possible neighborhood configura-

tions and corresponding observation models with indicated number of possi-

ble unique rotations.

tain the displacement field that describes myocardial behav-

ior during a heart cycle. Using the displacement information,

other relevant measures such as local strain and torsion can

be readily computed and used in practice for classification of

(ab)normal heart function. Commonly, the analysis of tagged

MR images consists of three steps [2–7]. First, the endocar-

dial and epicardial contours of the left ventricle (LV) are de-

fined either manually or with semi-automated algorithms [5].

Second, the tag lines are segmented in every image of the se-

quence. In most cases, the line intercessions are used as fea-

ture points during the tracking. Third, the tag line positions

are used to fit either parametrized model of cardiac displace-

ment [2] or reconstruct a dense displacement field [9] from

sparse measurements using interpolation techniques such as

thin-plate splines [10] or B-spline solids [3, 7].

We propose to replace the second step with a novel PF-

based method capable of robust and accurate tracking of tag

line intersections even in cases of poor image quality, which

is inherent in this application due to the fading of tagging in

time. Additionally, such replacement simplifies the first step

of the framework because it eliminates the necessity to define

the LV contours in every frame of the image sequence, which

is also a nontrivial and error-prone task. In our case, the LV

contours are defined only in the first frame, where two orthog-

onal sets of tag lines represent a non-deformed grid and have

the highest contrast. Here, the tag lines are automatically de-

tected within a rectangular region of interest that bounds the

epicardial contour (Fig. 2) by pattern (grid) matching, as the

distance between the lines d, the line thickness h and the grid

orientation θT are known from the acquisition protocol. The

line intersections between two LV contours (hereafter called

“tags”) are further tracked using the proposed method. Each

tag has at most 4 neighbors and all 16 possible neighborhood

configurations are shown in Fig. 2. The coordinates and the

neighborhood type km (k = {1, . . . , 16}) of each tag m, to-

gether with the parameters d, h, and θT are used for initial-

ization of the proposed method.

Bayesian Tag Tracking. Within the Bayesian estimation

framework, we aim to estimate the tag locations in time

taking into account the noisy measurements (MR image

sequence) and prior knowledge about the system (heart) dy-

namics. At each time step t, the tag is described by a state

vector st = (xt, yt, θt), where (xt, yt) and θt define the

spatial position and local orientation, respectively. In this

case, the Bayesian tracking approach is used to recursively

estimate a time evolving posterior distribution (so called fil-

tering distribution) p(st|z1:t) that describes the tag state st

given all the observations z1:t = {z1, . . . , zt} up to time

t. The exact solution to this problem can be constructed by

specifying the Markovian probabilistic model of the state

evolution D(st|st−1) and the likelihood L(zt|st) that relates
the noisy measurements to any possible state st. The required

probability density function (pdf) p(st|z1:t) may be obtained,

recursively, in two steps: prediction and update [11, 12]

p(st|z1:t−1) =
∫

D(st|st−1)p(st−1|z1:t−1)dst−1, (1)

p(st|z1:t) ∝ L(zt|st)p(st|z1:t−1). (2)

In our case, the initial pdf is given in terms of a Dirac delta

function, p(s0|z0) = δ(s0 − ŝ0), where for each tag at time

t = 0, the initial position ŝ0 = (x̂0, ŷ0, θT ) is known from the

initialization procedure described above. The filtering distri-

bution embodies all available statistical information and an

optimal estimate of the state such as expectation, maximum

a posteriori (MAP), or minimum mean square error (MMSE)

estimates, may be obtained from the pdf [11, 12].

The straightforward generalization of the Bayesian for-

mulation to the problem of multi-tag tracking, where the de-

termination of the multimodal posterior distribution over the

joint configuration of the tags is required, is computationally

prohibitive due to the increase in dimensionality of the state

space [11, 12]. Similar to our previous work on tracking in

microscopy [13], in order to capture the multi-modal nature

and avoid computational problems, the filtering distribution

can be modeled as an M -component mixture [14],

p(st|z1:t) =
∑M

m=1 πm,tpm(st|z1:t) (3)

with
∑M

m=1 πm,t = 1 and non-parametric models for the in-

dividual mixture components (the filtering distributions for

each of M tags). In this case, the dimensionality of the state

space does not change and (3) can be updated in the same

fashion as the two-step approach for standard Bayesian se-

quential estimation [14].

The optimal Bayesian solutions defined by the recurrence

relations (1) and (2) are analytically tractable only in a restric-

tive set of cases [11]. For most practical models of interest,



sequential Monte Carlo methods [11, 12] (also known as par-

ticle filtering (PF)) are used as an efficient numerical approx-

imation. Here, the required posterior pm(st|z1:t) for each

tag m is represented as a set of Ns random samples (“parti-

cles”) and associated normalized weights {s
(i)
m,t, w

(i)
m,t}

Ns

i=1 as

pm(st|z1:t) ≈
∑Ns

i=1 w
(i)
m,tδ(st − s

(i)
m,t), and the filtering dis-

tribution (3) is approximated by {{s
(i)
m,t, w

(i)
m,t}

Ns

i=1}
M
m=1. The

solution using PF is given by a recursive procedure that pre-

dicts the state from time t − 1 to t and updates the weights

based on newly arrived measurements zt as

s
(i)
m,t ∼ D(sm,t|s

(i)
m,t−1) and w

(i)
m,t ∝ w

(i)
m,t−1L(zt|s

(i)
m,t),

(4)

i = 1, . . . , Ns, m = 1, . . . ,M . At each time step, the tag

position is estimated from pm(st|z1:t) using the MMSE esti-

mator. In order to apply the described framework in practice,

two models, D(st|st−1) and L(zt|st), have to be specified,

which we describe next.

Observation Model. For each tag m, the likelihood L(zt|st)
of the state sm,t is dependent on the location of that tag within

the grid (the neighborhood) and is given by one of the 16

models depicted in Fig. 2. The observation model for the state

sm,t is positioned at (xm,t, ym,t) in the image and with the

orientation θm,t. The type of the model is defined by km,

which is computed during the initialization (at time t = 0) by
examining the configuration of the grid. The average image

intensities in the “black” and “gray” rectangular regions are

computed (µ0 and µ1, respectively) and the difference is used

to define the likelihood as

L(zt|sm,t, km) =

{

exp
(

µ1−µ0

γ

)

− 1, µ1 − µ0 > 0,

0, µ1 − µ0 ≤ 0,

(5)

where the scaling factor γ controls the sensitivity (peakness)

of the likelihood. The parameters that characterize the gray

and black regions in the observation model (d and h, see

Fig. 2) are known from the acquisition settings.

Dynamical Model. The state evolution is specified by the

prior D(st|st−1), which in our case is modeled as a con-

strained random walk. The sampling of the new states (see

(4)) is done according to

s
(i)
m,t = s

(i)
m,0 + a(s

(i)
m,t−1 − s

(i)
m,0) + ut, (6)

where 0 ≤ a ≤ 1 controls if the new states are sampled

closer to the initial state s
(i)
m,0 (a = 0) or to the recent state

s
(i)
m,t−1 (a = 1), and ut is a normally distributed random vec-

tor ut ∼ N (0, diag[σ2, σ2, σ2
θ ]). In our experiments, employ-

ing more complex models (linear or accelerated motion) did

not improve the performance of our method.

Further Improvements. In order to impose the some physi-

cal properties of the myocardium (expansion and shrinkage

only up to some extent), we further constrain the possible

state transitions and explicitly model the interaction between

tags using a Markov random field (MRF) [13] with respect

to the described neighborhood systems, where the additional

penalty term is imposed during the weight computation in (4)

if neighboring tag locations are either too close or too far from

each other. The problem of possible mixing up of the particles

from two neighboring tags during the prediction and update

steps is solved using a deterministic spatial reclustering pro-

cedure (see more on that in [13, 14]). Additionally, the accu-

racy of the PF procedure is improved by using the smoothing

distribution p(st|z1:T ), which combines two filtering distribu-

tions p(st|z1:t) and p(st+1|zt+1:T ). The latter pdf is obtained
by backward processing of the image sequence from the same

initial states ŝ0, which is allowed due to the periodicity of the

image sequence with the period T .

Strain Measurements. The concise description of the re-

gional cardiac kinematics usually is given by the tensor of

deformation gradients T, which contains information of both

local stretch and local twist and can be decomposed into a

rigid rotation, specified by the orthogonal tensorR, and into a

pure deformation specified by the positive symmetric stretch

tensor D, as T = RD. In practice, the eigenvalues of D,

which are related to the local lengthening or shortening of

the myocardial regions along the associated eigenvectors, are

studied. Similar to other approaches [2–7], the tag displace-

ments obtained by the proposed method represent the motion

rather sparsely. In order to reconstruct a dense displacement

field from which strain, torsion and other mechanical indices

of function can be computed at all myocardial points, we used

thin-plate spline interpolation [10], which is frequently used

for such purpose [3, 7].

3. EXPERIMENTAL RESULTS

In-Vivo Imaging. The imaging was done using the in-house

clinical 3T MRI scanner (GE Medical Systems). A SPAMM

pulse sequence was used to acquire image data in experiments

on healthy and diseased rats and pigs. Multiple short-axis

view images of size 256 × 256 were collected using the fol-

lowing imaging parameters (rat-related, pig-related): repeti-

tion time (13, 4) msec, echo time (4, 1.25) msec, flip angle

(7, 11) degrees, slice thickness (1.6, 6) mm, spacing between

slices (1.6, 12) mm, pixel size (0.19×0.19, 1.25×1.25) mm2,

frames per heart cycle (24, 20), number of slice positions (7,
4), tag spacing (1.5, 6) mm, θT = 45◦.
Results. Five image sequences of rat data and five image se-

quences of pig data (see example images in Fig. 3 and Fig. 1,

respectively) were analyzed using the proposed method. The

endocardial and epicardial contours were manually drawn

only in the first frame. The algorithm parameters were man-

ually adjusted to obtain the best performance and fixed to the

following values: σ = 0.7, σθ = 0.1, γ = 1, h = 1, a = 0.8,
Ns = 500. The results of tag tracking in one of such image

sequences are shown in Figs. 3 and 4. According to visual



Fig. 3. Top row: examples of images from studies of rat hearts, with frames

6, 12 and 18 (out of 24 per heart cycle) showing the fading of the tagging

(Courtesy P. Wielopolski, Erasmus MC). Bottom row: tag trajectories ob-

tained using the proposed technique and Diagnosoft R©HARPTM.

Fig. 4. Examples of strain estimation using the tracking results obtained by

our algorithm and thin-plate splines for computing the eigenvalues of the

strain tensor and the corresponding eigenvectors (white dashes) in two sub-

sequent frames.

inspection, the proposed method correctly estimated the tag

intersections within myocardium through the whole image se-

quence. The reconstructed displacement and maximal strain

fields are shown in Fig. 4. Contrary to our technique, the

commercially available Diagnosoft R©HARPTM software for

MR image analysis, frequently used for diagnosis of cardio-

vascular diseases, could not cope with the poor image qual-

ity and produced many erroneous tracks; reliable tag tracking

was achieved only in the first 3–6 frames of the image se-

quence, were the tags had not faded away yet (Fig. 3).

Our PF-based algorithm was implemented in the Java pro-

gramming language (Sun Microsystems Inc.) as a plugin for

ImageJ (National Institutes of Health, Bethesda, MD). Track-

ing of 80-100 tags in a typical images sequence of 20–24

frames on a regular PC (Core 2 Duo with 2.66 GHz CPU and

3 GB of RAM) takes about 15–20 sec.

4. CONCLUSIONS

We have proposed a novel PF-based method for analysis of

myocardial displacement and strain using tagged MRI. The

method is built within a Bayesian estimation framework and

incorporates prior knowledge about the tag dynamics and ap-

pearance, which makes it robust against typically poor image

quality and intrinsic tag fading. Experiments on two types of

real (small) animal imaging data and comparison with com-

mercially available software confirmed that the method is

capable of accurate displacement and strain estimation with

minimal user interaction and can be used in practice for fast

data analysis. Our future work will address the question

of probabilistic LV contour detection and fusion of two ap-

proaches into one fully automatic PF-based method that will

be extensively validated and used in our further studies for

classification of healthy and diseased heart dynamics.
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