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ABSTRACT

In live-cell fluorescence microscopy imaging, quantitative analysis

of biological image data generally involves the detection of many

subresolution objects, appearing as diffraction-limited spots. Due

to acquisition limitations, the signal-to-noise ratio (SNR) can be ex-

tremely low, making automated spot detection a very challenging

task. In this paper, we quantitatively evaluate the performance of the

most frequently used supervised and unsupervised detection meth-

ods for this purpose. Experiments on synthetic images of three dif-

ferent types, for which ground truth was available, as well as on

real image data sets acquired for two different biological studies, for

which we obtained expert manual annotations for comparison, re-

vealed that for very low SNRs (≈2), the supervised (machine learn-

ing) methods perform best overall, closely followed by the detectors

based on the so-called h-dome transform from mathematical mor-

phology and the multiscale variance-stabilizing transform, which do

not require a learning stage. At high SNRs (>5), the difference in

performance of all considered detectors becomes negligible.

Index Terms—Object detection, noise reduction, image filter-

ing, machine learning, fluorescence microscopy.

1. INTRODUCTION

Quantitative analysis of dynamic processes in living cells us-

ing fluorescence microscopy, which is a powerful tool used in

biology for visualizing subcellular components [1], involves

the detection of many objects of interest. The objects, labeled

with fluorescent proteins, appear in the images as bright spots,

each occupying only a few pixels. Automated image analy-

sis, which is highly needed for modern high-throughput stud-

ies in proteomics, functional genomics and drug screening, is

still a great challenge due to limitations in the acquisition pro-

cess. The signal-to-noise ratio (SNR) is usually very low, as

the illumination intensities are kept low during experiments to

prevent photobleaching and photodamage [2]. Also, the spa-

tial resolution is rather coarse (on the order of 100 nm) com-

pared to the size of subcellular structures (typically only sev-

eral nanometers in diameter), resulting in diffraction-limited

appearance. As a consequence, it is often difficult, even for
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expert biologists, to distinguish objects from irrelevant back-

ground structures or noise.

In practice, automated detection methods either corrupt

the analysis with the presence of nonexistent objects by re-

porting (too many) false positives, or they bias the analysis

towards the (too few) objects that are clearly distinguishable.

In time-lapse imaging, where the objects of interest are to be

tracked over time to study their dynamics, conventional track-

ing algorithms, which consist of separate detection (spatial)

and linking (temporal) stages [2], also require accurate de-

tectors – poor detection likely causes the linking procedure

to yield nonsensical tracks, where correctly detected objects

in one frame are connected with false detections in the next

(and vice versa), or where tracks are terminated prematurely

because no corresponding objects were detected in the next

frame(s). Modern tracking approaches, based on Bayesian

estimation [3], avoid the hard decision thresholds in the de-

tection stage of conventional approaches. Nevertheless, even

in probabilistic tracking frameworks, some form of “deter-

ministic” object detection is still necessary in the track ini-

tiation and termination procedures [3], again illustrating the

relevance of having a good spot detector.

Several detectors have been proposed in the literature, and

the classic, relatively simpler methods have been compared

previously for tracking [4,5], but a thorough quantitative com-

parison including recent, more complex methods is missing.

In this paper, we compare seven unsupervised and two super-

vised methods that are used for object detection in fluores-

cence microscopy. These range from relatively simple local

background subtraction [1], to linear or morphological image

filtering [3, 6–8], wavelet-based techniques [9, 10], and ma-

chine learning methods [11]. We quantify their performance

using both synthetic images and real image data from differ-

ent biological studies.

2. DETECTION METHODS

The subresolution objects in our studies can be accurately

modeled using a Gaussian approximation of the point-spread

function (PSF) of the microscope [1, 7]. This involves two

parameters: σmax and σmin. To model different types of sub-



cellular structures (round or elongated appearance), we used

symmetric (σmax = σmin) and asymmetric (σmax > σmin)

Gaussian intensity profiles [3].

Each detector considered in this paper consists of three

steps, but implements them differently. First, the noisy in-

put image I containing the objects of interest (on a possibly

nonuniform background) is preprocessed using noise reduc-

tion methods, such as Gaussian smoothing [1], which increase

the SNR and improve object visibility. Second, the filtered

image J is transformed into a grayscale classification map C

using a signal processing step that is unique for each detection

method and enhances the denoised fluorescent signal only in

image regions where the actual objects are, while suppressing

background structures. For some methods, these two steps

are combined into a single algorithm. Third, to obtain the

number of objects and extract position information from the

classification map C, hard (binary) decision thresholds need to

be applied. The binary classification map CB is obtained by

applying a threshold to the signal magnitude in the grayscale

map C. Additional thresholding on object shape/size in the

binary map CB may also be performed.

Two types of detectors were considered in our study: un-

supervised and supervised. The former implicitly or explicitly

assume some object appearance model and contain parame-

ters that need to be adjusted in order to get the best perfor-

mance for a specific application. Seven methods of this type,

frequently used in microscopy image analysis, were included

in the evaluation: wavelet multiscale products (WMP) [9],

multiscale variance-stabilizing transform (MSVST) [10], top-

hat filter (TH) [6], spot-enhancing filter (SEF) [8], morpho-

logical grayscale opening top-hat filter (MTH) [1], h-dome

based detector (HD) [3], and two types of image-feature based

detectors: one that uses curvature information without tak-

ing into account spot intensity (IFD1), and one that combines

both sources of information (IFD2) [7].

Supervised methods, on the other hand, “learn” the ob-

ject appearance from annotated training data – usually a large

number of small image patches containing only the object in-

tensity profiles (positive samples) or irrelevant background

structures (negative samples). In order to make our compar-

ison study complete we also included two machine learning

(ML) approaches. The first one is the AdaBoost algorithm

(AB), which was recently shown to perform well also for spot

detection in molecular bioimaging [11]. The second method

is Fisher discriminant analysis (FDA) [12], which is a classi-

cal and well-known linear classifier, but which (to our knowl-

edge) has not been employed for spot detection in fluores-

cence microscopy up to now. It uses the same information as

AdaBoost but is computationally less expensive.

3. EXPERIMENTAL RESULTS

In the experiments, performed on synthetic as well as real bio-

logical image data as described below, connected components

found in the binary classification map CB produced by each

detector for each data set were counted as objects of inter-

est. The position of the detected objects was compared to the

ground truth (known exactly in the case of synthetic images

and obtained manually by annotation in the case of real bi-

ological images). The objects were labeled as true positives

(TP) if the correspondence with the ground truth was found

and as false positives (FP) otherwise. To compare the algo-

rithms, we considered two common performance measures:

the true-positive rate, TPR = NTP/(NTP + NFN), and (be-

cause the number of true negatives, NTN, is not defined) the

modified false positive rate, FPR*= NFP/(NTP+NFN). Here,
the number of false negatives is defined as NFN = N0 −NTP,

with N0 the number of objects in the ground truth. The two

measures allowed construction of free-response receiver op-

eration characteristic (FROC) curves to study the sensitivity

of the methods to changes in parameter values.

3.1. Experiments with Synthetic Data

Setup: Two types of object appearance were modeled, us-

ing 2D Gaussian intensity profiles (GIPs), with σmax =
σmin = 100 nm for round objects, and σmax = 250 nm,

σmin = 100 nm for elongated objects. Next, three types of

images (Type A, B, and C) were created, for each type of

object shape and for different levels of Poisson noise in the

range of SNR = 2–4 (see Fig. 1). Such SNRs are typical for

the real image data acquired in our biological applications

and are lower than the critical level of SNR = 4–5, at which

several classical detection methods break down [4, 5]. Here,

SNR is defined as the difference in intensity between the ob-

ject and the background, divided by the standard deviation of

the object noise [4]. The synthetic images of size 512×512

pixels (with pixel size ∆x = ∆y = 50 nm) contained 256

spots each, placed randomly within the image region with

no overlaps in the intensity distributions. Type A images

were constructed by adding a background level of 10 to GIPs

(similar to previous studies [4]) and applying a Poisson noise

generator independently to every pixel of the noise-free im-

age. In the case of Type B images, the background level

increased linearly in the horizontal direction (see Fig. 1),

from a value of 10 at the left image border to 50 at the right

border. Taking into account that the variance of Poisson noise

is intensity dependent, we corrected the object intensities ac-

cordingly prior to application of the noise generator in order

to keep the SNR constant over the whole image. Finally, type

C images mimic the intensity distribution in the presence of

large (compared to object size) background structures, which

are sometimes present in the real image data and can be either

larger subcellular structures or acquisition artifacts. In every

experiment, the performance of the detection techniques for

each object type was evaluated by computing NTP, NFP and

NFN for 16 images (each containing 256 ground truth objects)

and averaging the results over the 4096 objects.
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Fig. 1. Examples of synthetic images used in the experiments. The sym-

metrical GIPs are embedded into uniform (Type A), gradient (Type B), and

non-uniform (Type C) backgrounds.
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Fig. 2. Maximum detection probabilities (TPR∗) at the level FPR∗
= 0.01

for all detectors applied to Type A, B, and C images at SNR = 2 in the case

of the round and elongated objects.

Results: The performance of all detectors was compared

at the level of FPR∗ = 0.01 for the different image data at

SNR = 2 (see Fig. 2). From the results of the sensitivity anal-

yses (data not shown in this paper due to space limitations),

in which we studied the influence of small changes in method

parameter values on the behavior of TPR and FPR* for differ-

ent data types, we conclude that FDA and AB are superior to

all other detectors and show the highest TPR* and the lowest

sensitivity for all image data (Type A, B and C, SNR = 2).
The WMP method demonstrated the worst performance and

additionally showed high sensitivity to parameter changes, to-

gether with the TH detector, which demonstrated high perfor-

mance only for Type A and B data. The IFDs are quite sen-

sitive to parameter changes and do not have sufficiently high

TPR in the case of the elongated objects. MSVST, HD, SEF

and MTH demonstrated high TPR* and low parameter sensi-

tivity, but none of these three detectors is better than the other

two for all types of data. Finally we observed that the dif-

ference in performance between the methods decreases when

the SNR of the image data increases, and we found that for

SNR > 5 all methods perform equally well (TPR = 1).

3.2. Experiments with Real Data

Setup: The detection methods were also tested on real fluo-

rescence microscopy image data from several biological stud-

ies, where the estimation of important kinematic parameters

of subcellular particles in eukaryotic cells was of interest.

Two types of representative image data sets were selected

for these experiments. The first showed moving microtubule

(MT) plus-ends, which have a round or elongated appearance.

In the experiments, growing ends of MTs were tagged with

so-called plus-end-tracking proteins (+TIP), resulting in typi-

cal fluorescent “comet-like” dashes (see Fig. 3(a, b)). A Zeiss

LSM-510 confocal laser scanning microscope was used to ac-

quire images of GFP+TIP movements at a rate of 1 frame

per 1 or 2 seconds. The image sequences consisted of 30–50

frames of 512 × 512 pixels of size 75 × 75 nm2. The second

type of image data showed a variety of GFP-labeled vesicles

(Rab6 and peroxisomes), which have a round shape in the

images. In this case, HeLa cells and PEX3-GFP fusion were

used [3]. Images were acquired on a Zeiss Axiovert 200M

inverted microscope at a rate of 0.83 frames per second. The

image sequences consisted of 100 frames of 1344×1024 pix-

els of size 64 × 64 nm2 (see Fig. 3(c)).

Results: The parameters of each detection method were

fixed to the optimal values following from the experiments on

synthetic data. Since the ground truth was not available for

the real data, the detection results were analyzed by expert vi-

sual inspection and in comparison with manual analysis using

the freely available tracking tool MTrackJ for ImageJ (NIH,

USA). The FROC curves for all the detection methods applied

to two illustrative image data sets showing MTs (each image

containing ≈ 80–100 spots at SNR ≈ 2–4) and one data set

showing vesicles (containing ≈ 250 spots at SNR ≈ 3–8) are

shown in Fig. 3. From these results, it was confirmed that the

actual performance of the detection methods depends on the

application. For the microtubule data, which contained round

or elongated objects of almost identical sizes, we arrived at

the same conclusions as in the case of the synthetic image

data. For the vesicle data, however, the ranking of the detec-

tors was found to be slightly different. These images have a

higher SNR (≈ 3–8) but contain spots of varying sizes. In all

cases, the two ML detectors (FDA and AB) and the MSVST

and HD detector showed the best overall performance.

4. DISCUSSION AND CONCLUSIONS

In this paper we have evaluated the performance of seven

unsupervised and two supervised detection methods that are

used in practice for the detection of small spots in fluores-

cence microscopy images. The results from experiments on

synthetic images as well as real image data from two biolog-

ical studies indicated that no detector outperforms all others

in all considered situations. Overall, the supervised (machine

learning) methods performed better on the synthetic images

as well as on the real image data, but the differences in the
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Fig. 3. Examples of real fluorescence microscopy images (a, b, c) with manual spot annotation (white squares) by an expert biologist serving as ground

truth (courtesy A. Akhmanova, Erasmus MC). The corresponding FROCs (d, e, f) of all detection methods are shown below the images. In these plots, IFD

represents the IFD1 detector, which in the experiments on synthetic image data performed either similar to or better than the IFD2 detector (see Fig. 2).

performance were not large compared to some of the unsu-

pervised methods. Based on our extensive experiments, we

conclude that when a detector with overall good performance

is needed, the supervised AB or FDA detectors or the unsu-

pervised MSVST or HD detectors are to be preferred. The

main disadvantage of the supervised methods is that they re-

quire a training stage, which involves the extraction of posi-

tive and negative samples beforehand. We observed that the

training should not be done using only clearly visible spots in

image regions with high local SNRs: in order to achieve good

classification performance, it must also include many hardly

visible objects. Such manual annotation is extremely tedious,

time consuming, and observer dependent. Taking this into

account, the unsupervised MSVST [10] or HD detector [3]

is much easier to use in practice. Finally, when the SNR is

sufficiently high (> 5 as a rule of thumb), the other unsuper-

vised detectors perform just as well, and require only minimal

adjustment of their parameters to the specific application.
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