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ABSTRACT

Quantitative analysis of dynamical processes in living cells
by means of fluorescence microscopy imaging requires track-
ing of hundreds of bright spots in noisy image sequences.
Deterministic approaches that perform object detection prior
to tracking usually produce many incorrect tracks. We pro-
pose an improved, completely automatic tracker, built in a
Bayesian probabilistic framework. It fully exploits spatiotem-
poral information and prior knowledge, yielding more robust
tracking also in case of photobleaching and object interaction.
Results from a preliminary quantitative evaluation based on
highly realistic synthetic image sequences as well as real flu-
orescence microscopy image data in comparison with manual
tracking indicate superior performance.

Index Terms— Particle filtering, sequential Monte Carlo,
multiple object tracking, microtubules, fluorescence mi-
croscopy.

1. INTRODUCTION

In the past decade, fluorescence microscopy has proven to
be a groundbreaking and effective imaging tool for studying
intracellular dynamics. Nowadays, high-throughput experi-
ments generate vast amounts of dynamic image data, which
cannot be analyzed manually with sufficient speed, accuracy
and reproducibility. Hence, the development of robust and
highly reproducible automated tracking methods, which elim-
inate the bias and variability in human judgment, is of great
importance [1, 2]. Recently we have shown [3] that for this
purpose, probabilistic tracking approaches, also known as se-
quential Monte Carlo (SMC) methods or particle filters (PF),
are accurate and more robust alternatives to conventional de-
terministic tracking techniques, which separate the object de-
tection and object linking stages and usually break down at
signal-to-noise ratios (SNR)<5 [4, 5].

In this paper we propose several important improvements,
both fundamental and practical, over the standard PF approach
[6, 3]. Specifically, we present a new dynamic model which
can incorporate object interaction and photobleaching. In ad-
dition, we improve the robustness and reproducibility of the

algorithm by using data-dependent importance sampling and
a new, completely automatic initialization procedure. The
performance of the algorithm is demonstrated on real fluo-
rescence microscopy data sets showing moving vesicles and
growing microtubules.

2. TRACKING FRAMEWORK

2.1. Bayesian Tracking and Particle Filtering

The Bayesian tracking approach deals with the problem of
inferring knowledge about the object state xt, which changes
over time, using a sequence of noisy measurements z1:t up
to time t, by recursively estimating a time evolving poste-
rior distribution (or filtering distribution) p(xt|z1:t). The ex-
act solution to this problem can be constructed by specify-
ing the Markovian probabilistic model of the state evolution
D(xt|xt−1) and the likelihood L(zt|xt) that relates the noisy
measurements to any given state. The required probability
density function (pdf) p(xt|z1:t) may be obtained recursively
(assuming the initial pdf p(x0|z0) ≡ p(x0) is available) using
the Chapman-Kolmogorov equation and Bayes’ rule [7]

p(xt|z1:t) ∝L(zt|xt)
∫
D(xt|xt−1)p(xt−1|z1:t−1)dxt−1.

(1)
This recursion can be processed sequentially so that it is not
necessary to first load the complete data set, nor to repro-
cess existing data if a new measurement becomes available.
The filtering distribution embodies all available statistical in-
formation and an optimal (with respect to any criterion) esti-
mate of the state (such as expectation, maximum a posteriori
(MAP), or minimum mean square error (MMSE) estimates)
may be obtained from the pdf.

The optimal Bayesian solution, defined by the recurrence
relation (1) is analytically tractable in a very restrictive set
of cases [8]. For most practical models of interest, SMC
method [6], [8] is used as an efficient numerical approxima-
tion technique, which represents the required posterior den-
sity function p(xt|z1:t) with a set of Ns random samples, or
particles, and associated weights {x(i)

t , w
(i)
t }Ns

i=1. Thus, the



filtering distribution can be approximated as

p(xt|z1:t) ≈
Ns∑
i=1

w
(i)
t δ(xt − x(i)

t ), (2)

where δ(·) is the Dirac delta function and the weights are nor-
malized:

∑Ns

i=1 w
(i)
t = 1. The samples and weights are then

propagated through time to give an approximation of the fil-
tering distribution at subsequent time steps. The weights are
recursively updated using sequential importance sampling,

w
(i)
t ∝

L(zt|x(i)
t )D(x(i)

t |x(i)
t−1)

q(x(i)
t |x(i)

t−1, zt)
w

(i)
t−1, (3)

where the importance function q(xt|xt−1, zt) (subject to some
weak constraints) describes which areas of the state-space
contain most information about the posterior p(xt|z1:t), and
x(i)

t ∼ q(xt|x(i)
t−1, zt), i = {1, ..., Ns} are the particles drawn

from that importance function. A more detailed formulation
of q(·|·) is given below. For very large numbers of samples,
this MC characterization becomes an equivalent representa-
tion to the usual functional description of the posterior pdf.
Having this kind of representation, the MMSE estimate can
be approximated as x̂MMSE

t ≈
∑Ns

i=1 x(i)
t w

(i)
t . During opera-

tion of the particle filter, resampling of the particles according
to the importance weights is necessary in order to avoid the
degeneracy problem [7].

2.2. Multiple Object Tracking

It is straightforward to generalize the Bayesian formulation to
the problem of multi-object tracking. However, due to the in-
crease in dimensionality this formulation leads to an exponen-
tial explosion of computational demands. The primary goal in
a multi-object tracking application is to determine the multi-
modal posterior distribution over the current joint configura-
tion of the objects. Multiple modes are caused either by ambi-
guity about the object state due to insufficient measurements,
or by the measurements coming from multiple objects being
tracked. To capture the multi-modal nature, which is inherent
to our application, the filtering distribution was modeled as an
M -component mixture model [9],

p(xt|z1:t) =
M∑

m=1

πm,tpm(xt|z1:t), (4)

with
∑M

m=1 πm,t = 1 and a non-parametric model (2) is as-
sumed for the individual mixture components pm(xt|z1:t).
In this case, the particle representation of the filtering dis-
tribution, {x(i)

t , w
(i)
t }N

i=1 with N = MNs particles, is aug-
mented with the set of component indicators {c(i)t }N

i=1, with
c
(i)
t = m if particle i belongs to mixture component m. The

non–parametric mixture (4) can be updated in the same fash-
ion as the standard Bayesian sequential estimation (1) [9].

3. MODELING AND EXPERIMENTAL RESULTS

3.1. Microtubule Growth Study and Photobleaching

The proposed technique was applied to 2D fluorescence mi-
croscopy image sequences of moving vesicles and microtu-
bules (MT) tagged with green fluorescent protein. MTs are
protofilaments (diameter ∼25nm) of α and β tubulin, which
are studied in terms of structure, localization and dynamic
behavior under different experimental conditions. The anal-
ysis of the data is tedious and complicated by photobleach-
ing, a dynamic process in which fluorochrome molecules un-
dergo photo-induced chemical destruction upon exposure to
excitation light and thus lose their ability to fluoresce. The
mechanisms of photobleaching in biological objects are not
yet well understood. Commonly, a single-exponential process
I(t) = Ae−αt + B is used as a basis for the photobleaching
modeling in microscopy [10], where A, B and α are experi-
mentally determined constants.

3.2. Dynamic Model and Object Interactions

The dynamic behavior of the vesicles and visible ends of mi-
crotubules is modeled using a nearly constant velocity model
[11] with the state vector xt = (xt, ẋt, yt, ẏt, It)T . The pho-
tobleaching is modeled as a first-order Gauss-Markov pro-
cess, It = (1 − α)It−1 + ut, where It is the object intensity
at time t, ut is zero-mean Gaussian noise, and α ≤ 1 is an ex-
perimentally obtained rate of photobleaching, which can also
be estimated from image data by model fitting. In this case,
D(xt|xt−1) is a linear Gaussian model [7], which can easily
be evaluated pointwise in (3), and is given by

D(xt|xt−1) ∝ exp
(
− 1

2 (xt − Fxt−1)T Q−1(xt − Fxt−1)
)
,

where F and Q are the process transition and covariance ma-
trices respectively [11]. This model captures small accelera-
tions in the object motion and fluctuations in the object inten-
sity present in our image data [3].

To avoid track coalescence and to obtain a more realistic
motion model in case of multiple object tracking, we propose
to explicitly model the interaction between objects using a
Markov random field (MRF) [12]. Here we use a pairwise
MRF, expressed by means of a Gibbs distribution

ψt(x
(i)
t ,x(j)

t ) ∝ exp (−di,j
t ), i, j ∈ {1, ..., N}, c(i)t 6= c

(j)
t ,
(5)

where di,j
t is a penalty function that penalizes the states of two

objects c(i)t and c(j)t that are closely spaced at time t. That is,
di,j

t is maximal when two objects coincide and gradually falls
off as they move apart. This simple pairwise representation is
easy to implement yet can be made quite sophisticated. Us-
ing this form, we still retain the predictive motion model of
each individual target. For that, we sample Ns times the pairs
(x(i)

m,t−1,x
(i)
m,t), m = {1, ...,M} from pm(xt−1|z1:t−1) and



q(xt|x(i)
m,t−1, zt) respectively. Taking into account (5), the

weights (3) in this case are given by

w
(i)
m,t ∝

L(zt|x(i)
m,t)D(x(i)

m,t|x
(i)
m,t−1)

q(x(i)
m,t|x

(i)
m,t−1, zt)

M∏
k=1,k 6=m

ψt(x
(i)
m,t,x

(i)
k,t).

In our application we have found that an interaction potential
based on object positions only is sufficient to eliminate most
tracking failures.

3.3. Observation Model and Likelihood

The complete measurement recorded by a CCD camera at
time t is an N ×M image, zt = {zt(i, j) : i = 1, ..., N, j =
1, ...,M}, with zt(i, j) the measured intensity at pixel (i, j),
which corresponds to a rectangular region of dimensions ∆x×
∆y nm2. Due to limited spatial resolution (∼200nm) in light
microscopy, subcellular structures (typically of size <20nm)
are imaged as blurred spots. The blurring is characterized
by the point-spread function (PSF) of the microscope. We
use a Gaussian approximation of the PSF [4]. To model the
elongation in the intensity profile of MTs we use the veloc-
ity components from the state vector xt as parameters in the
PSF. Thus, for an object of intensity It at position (xt, yt), the
intensity contribution to pixel (i, j) is approximated as:

ht(i, j;xt) = It exp
(
− 1

2m
T RT Σ−1Rm

)
+ bt (6)

where R = R(φ) is a rotation matrix, tanφ = ẏt/ẋt, m =
(i∆x − xt, j∆y − yt)T , Σ = diag[σ2

max, σ
2
min] and bt is an

estimated background level, which is defined as the average
image intensity at time t (the contribution of object intensity
values is negligible). The parameters σmax and σmin represent
the amount of blurring and, at the same time, model the elon-
gation of the object along the direction of motion.

The proposed likelihood is defined as

LS(zt|xt) ∝
1

ση(xt)
exp

(
− (Sz

t (xt)− So
t (xt))

2

2σ2
η(xt)

)
, (7)

with Sz
t (xt) =

∑
(i,j)∈C(xt)

zt(i, j) and So
t (xt) =

∑
(i,j)∈C(xt)

ht(i, j),

where C(xt) = {(i, j) ∈ Z2 : ht(i, j;xt)− bt > 0.1It}, and
σ2

η = So
t is taken to approximate the Poisson distribution.

The recursive Bayesian solution is applicable as long as the
statistics of the measurement noise are known for each pixel.

3.4. Data-Dependent Sampling

Standard PF [6] uses q(xt|xt−1, zt) = D(xt|xt−1) and usu-
ally performs poorly because too few samples are generated
in regions where the desired posterior p(xt|z1:t) is large. In
order to construct the proposal distribution which alleviates
this problem and takes into account the most recent measure-
ments zt, we propose to transform the image sequence into

probability distributions, knowing that the PSF blurs the point
light sources and adds uncertainty to their positions. For each
object we use the following convolution transformation

p̃m(x, y|z̃m,t) =
(Gσ ∗ z̃m,t)r∫

Cm,t
(Gσ ∗ z̃m,t)rdxdy

, r > 1, (8)

where Gσ is the Gaussian kernel with scale σ and z̃m,t(x, y)
is the first-order interpolation of zt in the circular region Cm,t

(the radius is defined by the covariance matrix ofD(xt|xt−1),
e.g. 3-standard-deviation level) centered at the object position
predicted from the previous time step. The new data depen-
dent proposal distribution for object m is defined as

q̃m(xt|z̃m,t) = p̃m(xt, yt|z̃m,t)N (It|z̃m,t(xt, yt)− bt, σ
2
I )×

N (ẋt|xt − x̂MMSE
m,t−1, σ

2
ẋt

)N (ẏt|yt − ŷMMSE
m,t−1, σ

2
ẏt

),

where N (·|µ, σ2) indicates a real normal distribution. For
better performance we use a mixture of both proposals,

qm(xt|xt−1, zt) = γD(xt|xt−1) + (1− γ)q̃m(xt|z̃m,t),

where 0 < γ < 1 balances the two proposals. We have found
that this proposal distribution is uniformly superior to the reg-
ular one and scales much better to smaller sample sizes.

3.5. Track Initialization and Management

The proposed PF can be initialized manually in the first image
frame by specifying regions of interest (ROI). For completely
automatic initialization in the first frame and also for detec-
tion of newly appearing objects for tracking in the subsequent
frames, the image space is divided into rectangular cells and
Ns particles are sampled according to importance function
(8), where z̄m,t is the whole image. The number of sampled
particles in each cell represents the degree of belief in object
birth. In cells (not containing any of the M existing objects)
with counts larger than some threshold Ntd, new tracks are
initiated with initial mixture weights πbd. The threshold Ntd

can be estimated experimentally and depends onNs, cell area
and the number of bright spots in the image data.

Whenever objects pass close to one another, the object
with the best likelihood score typically “hijacks” particles of
nearby mixture components. This problem is partly solved us-
ing the MRF model for object interactions. To better resolve
the ambiguity in such situations, the Hough transformation is
used for each spatiotemporal ROI of 3-5 frames Cm,t−τ :t+τ

of track m to correctly model the velocity changes. If ob-
ject m passes close to the object which was not tracked yet,
the distribution pm(xt|z1:t) becomes too diffuse in a few
time steps and the reclustering procedure ({c′(i)t },M ′) =
F ({x(i)

t }, {c(i)t },M) [9] is performed to initiate new tracks.
The merging of the objects does not occur in our application
and is therefore forbidden. If the mixture weight πm,t is be-
low some predefined threshold level πtd, the component m is
removed from the mixture and the track m is terminated at
time t.
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Fig. 1. Visualization of the results (six tracks) of tracking micro-
tubules (bright spots) in presence of photobleaching using our tech-
nique (single frames, taken every 2 sec, from 2D time-lapse studies).
This example illustrates the capability of our algorithm to capture
newly appearing objects (tracks 5 and 6) and to detect object disap-
pearance (e.g. track 4). It also shows the robustness of the algorithm
in case of closely passing objects (tracks 1 and 5).

3.6. Evaluation on Real Data

The tracker was tested on three 2D+T image data sets of size
512 × 512 × 20 showing moving vesicles and growing mi-
crotubules in the presence of photobleaching. The data sets
were preselected from larger volumes by manually choosing
the ROIs. The results of tracking MTs are presented in Figs. 1
and 2. In the experiments the tracker correctly followed on
average 15-20 automatically detected spots simultaneously.
The evaluation of the algorithm was done by visual inspec-
tion and by quantitative comparison with the results of manual
tracking of the same spots. Lacking ground truth for the real
data, we calculated the localization deviations between man-
ual and our automatic tracking. These ranged from 50nm to
180nm depending on SNR, which is in good agreement with
our previous results on synthetic image data [3]. The veloc-
ity estimates derived from the trajectories compare well to the
estimates obtained by expert biologists by means of manual
tracking in the same image data.

4. CONCLUSIONS

We have presented several important improvements over the
basic PF-based tracking approach presented earlier [3]. These
have led to a fully automatic algorithm for robust and accu-
rate detection and tracking of time varying numbers of objects
in image sequences obtained by dynamic fluorescence mi-
croscopy imaging. While we have presented results on 2D+T
image data, the algorithm can straightforwardly (simply by
extending the state vector with z-components) be applied to
(multi-channel) 3D+T image data. The experimental tracking
results obtained with our algorithm compare well with manual
tracking results of expert biologists. Our findings encourage
use of the described approach to analyze complex biological
image sequences not only for obtaining statistical estimates of
average velocity and life span, but also for detailed analysis
of complete life histories.

T
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Y

Fig. 2. Visualization of a 2D+T fluorescence microscopy image
sequence showing microtubules (bright, elongated spots) and the re-
sults of tracking using our technique.
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