Engineering Simulation, 1999, Vol. 17, pp.23—32 © 1999 OPA (Overseas Publishers Association)
Reprints available directly from the Publisher N. V. Published by license
Photocopying permitted by license only under the Gordon and Breach
Science Publishers imprint.

Printed in Singapore

On Simulation of Oscillations
of Given Form

L. A. SINITSKIY and I. V. SMAL'

Lvov State University, Ukraine

(Received January 12, 1998)

A class of periodic processes has been researched for which a self-oscillator can be synthesized
with one degree of freedom by providing the periodic mode stability as a whole.
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The results of studying the mathematical model of generators of the second
order in the form of Van der Pole equation indicate that when € is changed the form
of oscillations generated is changed over a rather wide range, from sinusoidal up to
relaxation [1] which form is close to rectangular. Therefore a problem regularly
arises of constructing the generator of the second order for any given form of curve.

In the works dedicated to the synthesis of generators of oscillations of a given
form it was shown that when only systems of the second order were used both
theoretical and practical difficulties arise [2]. Using the method proposed in [2], the
oscillations of an arbitrary form may be synthesized on the basis of the second order
system using certain limitations. But the issue remains open of stability of the
periodic mode to be constructed, namely, of the limiting cycle corresponding to
this mode.

A simple mathematical model is known where the generator of strictly
harmonic oscillations is realized with a single totally stable limiting cycle:

—d—u=—v+s(l—u2 —vzju; g—‘izu+s[l—u2 —vzjv. @
dt dt

The periodic solution # =cos 7, v =sin ¢ corresponds to this limiting cycle. By
[2] the variables are changed in (1):

u=0,(x,y); v=0,(x,y), )
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where ¢ | (x ¥) 0, (x, y) are the single-valued differentiated functions. Then the
differential equations relative to x (), y (¢) are
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For the system (3) as well as (1) to have a solution of Cauchy problem with all
values x (0), y (0) it is necessary and sufficiently to meet the conditions [3]:

J#0 ‘v’(x,y)eRz; ) lim [(plz+(p:2)_ j=

(x“+)y )

In this case (2) is a mutual single-valued transform: for all x,y e R? the
single-valued functions x = F, (u,v), y =F, (u,v) V{(u,v)e R? exist.

The topological structures on the planes x, y, %, v coincide. This means that the
limiting cycle on the plane x, y is stable as a whole and consequently, the penodlc
modesXx (¢ —¢ ), y(t—t,)are also stable. Here ¢, is the arbitrary constant. But it is
unknown whether this transform exists for the oscillation X (¢) of arbitrary form. In
the case when Jacobian does not change the sign on the circumference u? +v2=l1
and in its certain neighbourhood the required periodic mode may be constructed.
However its stability as a whole cannot be guaranteed.

The construction of generator of oscillations of arbitrary form ¥ (¢) is reduced
to the synthesis of F (%, v) function which has to meet the condition:

% (1)=F, (cos t,sin 7), 4)
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and the choice F, (u, v) is bounded by the requirement

OF, OF,

= . 5)
I=| Q4 O |20V (uv)eR?, _lim (F2+F2j=oo. (

ok, o, @1

ou Ov

The necessary condition which the function F, (»,v) must satisfy is that
the curve I': X (#)=F, (cos t,sin?), y(1)=F, (cost, sin #) representing the
limiting cycle on the plane, should be a simple curve, ie. It should not
have self-intersections. To construct the curve a limitation is imposed on X (¢):
let max X (¢)=x_, then the highest local maximum x,<x is assumed.
WithSiE g8nerality limitation x (0)=x o, is taken, then

T =2m. (6)

i
yin=L__

(1-1} T-1<t<T,
T

If © is chosen in such a way that X(T —-1)>x ;» the curve I has no
self-intersections.

The above method of y (f) construction reproduces the scanning on the
oscilloscope screen and certainly is not a unique one. The condition (4) may be

satisfied by at least two methods. The first is in representation F, (u,v) in the form
of linear combination of Chebyshev polynomials of the first and second kind. If

[+ 0]
Fi(u,v)=qa, +1§1 [ak T, (u)+b, vU,_ (u) },
is taken where
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then assuming u (#) =cos ¢, v (¢) =sin ¢ we obtain

()= i (a, coskt+b, sin kt). Q)
k=0

F, (u,v)may be similarly obtained in the form of linear combination of Chebyshev
polynomials if y (¢) from (6) is represented as Fourier series. Then it is valid that the

topological mapping of the circumference 4% +v? =1onto the curve I is obtained.
But we cannot yet state that this mapping is regular on the circumference and in the
circle % +v? < 1, i.e. the question remains open for which domain the Jacobian of

transform is not vanished [4].

The second method is based on the Riemann theorem by which the schlicht
function w= f (z), z =X +jy, w=u+ jv exists which maps the domain D limited
by the curve I onto the interior of the single circle of the plane w and satisfying the
conditions f (z,)=0, f'(zy)>0at the given point z, of the domain D [5].

The Jacobian of transform u =9 , (x,¥), v=0, (x, y)in the case of analytical

function f (z)is
2 2
J{a%pl‘) (%} =|r )’ =0

Since the function is schlicht in D, then f'(z)#0, V —z <> D. Thus the
difference of Jacobian from zero inside the curve I is guaranteed by the Riemann
theorem. But it is unknown whether the derivative 7' (z) differs from zero on the
contour I” and how close to the contour I zeros f' (z) are located outside it.

These considerations are not constructive since it is well known [5] that the
construction of the function f (z) for a contour of a complex form is extremely
difficult and the form of the functions ¢, (x,y), ¢, (x,y) is very complex.
Besides, the mapping on the basis of the Riemann theorem makes it possible to map
the circumference in the contourI” of an arbitrary form. However this does not mean
the form of the function x (¢) coincides with the given one. By the Riemann theorem
the coincidence with the given curve X (#) can be reached for not more than three
points. Therefore the form of functions which may be realized is rather limited.
Really, if £ (z)is represented as the Taylor series

w=3 o,z , ®
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b . it . . . .
where o r =4 e’ % and if z=e’" is assumed, i.e. # =cos #, v =sin ¢, we obtain

2 i (kt+ W
w=z Ak e.]( k),
k=0

or

x(t)= 5 4, cos(kt+%,), y()=3 A, sin(kt+F,).
k=0 k=1

The transform (7) would seem to permit us to obtain the oscillations of arbitrary

2]
form. Note that y ()= >, A, cos(kt+%¥, —m /2) is the Hilbert transform of x (f)
k=1
function. But the univalence condition implies significant limitations on the class of
the functions to be synthesized. If f (z) is represented as the Taylor series (8) then
despite the absence of necessary and sufficient conditions of univalence, the

(5ol
necessary conditions | ,| <2, [o 4| <3 and sufficient condition 2, nlo | <1may
n=2
be used.
From the necessary univalence condition it follows that the amplitudes of the
second and third harmonics cannot exceed that of the first harmonic two and three
times respectively. In fact these necessary conditions are far from sufficient. For

Z)=z+a z?‘, the necessary and sufficient univalence condition|a ,|<1/2, i.e.
2 ary 2

the amplitude of the second harmonic in the signal to be synthesized must not
exceed half of the amplitude of the main frequency. In this case the sufficient
condition coincides with the necessary one. From the sufficient condition it follows

that the univalence is provided if(a [ <1/n 3. This means that the signal synthesis

by the transform w=f (z) is possible for the cubic law of harmonics decrease
depending on their number.

The above considerations indicate that the use of analytical functions for
mapping (u,v)—> (x, y) significantly restricts the class of functions which can be
synthesized with generator with one degree of freedom. Therefore for estimating the
possibilities of systems of the second order two methods may be appropriate.

1. Somewhat to restrict the class of functions to be generated with saving global
stability.

2. To reject the demand of global stability and to try to construct generator
which synthesises the oscillations of arbitrary form.
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Very wide class of oscillations may be obtained if
x=Fu)+gu)h(v), y=-u+x, 9

where F () is the linear combination of the Chebyshev polynomials which
provides in x (¢) the cosine series with arbitrarily given coefficients of harmonics
with u =cos ¢ to be substituted. The second summand in the expression for x is
necessary to obtain sine components of Fourier series.

The transform Jacobian (9) is J =g (#) ¥ (v) and for the condition J >0to be
met g (u)>0 V ue R, W (v)>0 V v € R should be assumed. It is known that the
Jacobian inequality to zero does not yet provide one-to-one mapping. The
uniqueness of the inverse mapping should be corrected. This is possible in our case.
When the relationships for x and y (9) are added and subtracted we obtain

x=-F(x-y)

MEXeR BTG

The uniqueness of the inverse mapping V (x, y) € R? follows from the fact that

the function g (#) =c, c¢<<1is monotonous.

Thus the above mapping makes it possible to obtain any predetermined
amplitude spectrum if only cosine components of Fourier series are taken into
account. It is sufficient here to assume g (#) =c, c<< 1 The given phase oscillation
spectrum is somewhat more difficult to be obtained.

Consider a special case

© 2k-1
g(u)=l+a,u+a, u?, h(v)=2 b, 4 .
2k 2k -1

For g (u)to be positive the inequality should be satisfied
a? (10)
and the coefficients of the series for #(v) must be those that

[e o]
K=Y b, v** P20 vver
k=1
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Figure 1. Periodic oscillations X realized by self-oscillator: a —X(¢) = (cos(2£) + cos(9t))3 +0.04sing;
b — %(1) = (cos(2) + cos(71))* + 0.04 sin t

The series % (v) involves only odd powers v in order not to generate additional
cosine summands in x (#) which were already obtained by substituting ¥ =cos ¢ in
F (u). If h(v)=v is assumed, then

a a
g(cost)sintz(l+%a2jsint+7lsin2t+725in3t. an

The relationship (10) shows that the coefficients in sine sum cannot be
arbitrarily chosen: the third harmonic cannot exceed the value of the first one, and
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Figure 2. Phase portrait of oscillations of the second order

the second harmonic with a, =1 should be 2.5 lower than the first one. The
limitations on the amplitudes of higher harmonics of sine components is also
preserved. We shall try to show how they influence the forms of the curves which
may be realized.

The Fourier series with cosine components describes the even functions or
more precisely, the functions which are symmetric relative to extremal points (if it is
taken into account that the substitution u =cos (¢ —1,) is possible). Arbitrarily great
asymmetry may be obtained if the sine component of the main frequency is
introduced in x (¢) using the second summand. Then the limitations on the
oscillations to be realized are insignificant: this is the difficuity of creating arbitrary
asymmetry relative to extremal point by high frequency harmonics. The possibility
of realization of a wide class of oscillations may be seen from the plots of functions
to be synthesized shown in Fig. 1.

The second way of expanding the class of the functions generated may be also
studied on the mapping (9) if the conditions of global stability of periodic solutions
are rejected. For example, if the condition (10) is not fulfilled, the condition (11) is

violated on straight lines in the plane # =054, (—al + al2 -4a, ) In the plane

(x,y) it is equivalent to the condition
y=x-05a, (~al iw/alz —4a, j (12)

For the self-oscillating system with the given curve form to be realized, the
straight lines (12) must not intersect the boundary cycle I'. Numerical calculations

-
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indicate that significant expansion of the class of realized curves is not observed.
Other possible ways are not noteworthy.

The possibility of creating self-oscillating system with one degree of freedom
where oscillations may have a rather complex form, permits another point of view
as to the qualitative difference between systems of the second and higher order. For
example, Fig. 2 presents the phase portrait

X =01sin t +cos 197t +c0s199¢; y=—cost+X,

obtained for a generator of the second order. The existence of two harmonic
oscillations with the frequency ratio 199/197 makes them practically
indistinguishable from quasi-periodic oscillations with two basis frequencies.

The frequency ratio p / g may be in principle obtained for any high values p, g.
The increase of “basis” frequencies generated by the system of oscillations of the
second order also does not offer many difficulties.

Note that two black triangles in Fig. 2 with high resolution depict a closed
simple curve without self-intersections. The difference between systems of the
second and higher order is reduced to the fact that in the first case the frequency
relationship of separate oscillations is the rational number and in the second case it
is irrational. But with high mutually simple p, ¢ this difference is not discovered
from the point of view of the experimenter because" the physician never encounters
irrational numbers" [6].

Further complications of oscillations are possible in systems of the second
order when they become practically indistinguishable from chaotic oscillations. In
any case, if we try to classify these oscillations by fractional dimensionality on the
basis of Takens results [7] or by the spectrum form, the results of complex periodic
oscillation studies appear indistinguishable from those of chaotic oscillations. It is
clear that this conclusion is not original but attention was probably not given to its
validity for systems with one degree of freedom.
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